
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 1, JANUARY 2017 41

Performance Improvements and Congestion
Reduction for Routing-Based Synthesis

for Digital Microfluidic Biochips
Skyler Windh, Calvin Phung, Daniel T. Grissom, Paul Pop, Member, IEEE, and Philip Brisk, Member, IEEE

Abstract—Routing-based synthesis for digital microfluidic
biochips yields faster assay execution times compared to module-
based synthesis. We show that routing-based synthesis can lead
to deadlocks and livelocks in specific cases, and that dynami-
cally detecting them and adjusting the probabilities associated
with different droplet movements can alleviate the situation.
We also introduce methods to improve the efficiency of wash
droplet routing during routing-based synthesis, and to sup-
port nonreconfigurable modules, such as integrated heaters and
detectors. We obtain increases in success rates when dealing
with resource-constrained chips and reductions in average assay
execution time.

Index Terms—Digital microfluidic biochip (DMFB), routing-
based synthesis, wash droplets

I. INTRODUCTION

SOFTWARE-PROGRAMMABLE laboratories-on-a-
chip (LoCs) offer the potential to automate many

laboratory functions that are presently performed by hand. The
anticipated result is a revolution in terms of productivity and
miniaturization that is poised to positively affect the biological
sciences. Established applications of LoC technology include
DNA sequencing, immunoassays, point-of-care diagnostics,
and many others [1]. Electrowetting-on-dielectric (EWoD)
is an emerging LoC technology that manipulates discrete
droplets [2]–[4]. Fig. 1 illustrates the electrowetting effect:
applying an electrical potential to a liquid droplet resting
on a hydrophobic surface reduces the contact angle, causing
the droplet to deflect. In essence, the application of an
electrostatic force increases the amount of surface area that is
in contact with (i.e., wetted by) the droplet; hence the name
electrowetting.

Manuscript received April 10, 2015; revised September 29, 2015 and
March 12, 2016; accepted April 17, 2016. Date of publication April 22, 2016;
date of current version December 20, 2016. This work was supported by
the National Science Foundation under Grant 1035603 and Grant 1545097.
This paper was recommended by Associate Editor T.-Y. Ho. (Corresponding
author: Philip Brisk.)

S. Windh, C. Phung, and P. Brisk are with the Department of Computer
Science and Engineering, University of California at Riverside, Riverside,
CA 92521 USA (e-mail: swind001@ucr.edu; calvin.phung@ucr.edu;
philip@cs.ucr.edu).

D. T. Grissom is with the Department of Engineering and Computer
Science, Azusa Pacific University, Azusa, CA 91702 USA (e-mail:
dgrissom@apu.edu).

P. Pop is with the DTU Compute, Technical University of Denmark,
Kongens Lyngby 2800, Denmark (e-mail: paupo@dtu.dk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2016.2557726

Fig. 1. Depiction of the electrowetting principle [2, Fig. 3]: applying an
electrostatic potential to a droplet at rest reduces the contact angle with the
surface, thereby increasing the surface area in contact with the droplet.

Fig. 2. (a) DMFB is composed of a 2-D grid of electrodes. (b) Cross section
of a DMFB: activating CE2 holds the droplet in-place; activating CE1 and/or
CE3 induces droplet motion.

Fig. 2(a) shows a software-programmable LoC based on
the EWoD principle; these devices, called digital microflu-
idic biochips (DMFBs), manipulate discrete droplets of liquid
on a 2-D grid. A DMFB comprises a 2-D array of individ-
ually addressable electrodes placed beneath a hydrophobic
surface and a ground electrode placed atop a hydrophobic
surface, with a droplet sandwiched in between, as shown in
Fig. 2(b). Activating a control electrode (CE2) under a droplet
holds it in-place. Activating adjacent electrode CE1 (CE3) and
deactivating CE2 transports the droplet left (right).

As shown in Fig. 3, the DMFB instruction set includes
droplet transport in two dimensions, splitting, merging two
droplets into one, mixing, and storage in-place. Additionally,
external devices such as heaters [5], photo-detectors [6], [7],
capacitance sensors [8], impedance sensors [9], or magnetic
separators [10] can be affixed to specific regions of the
DMFB to offer additional functionality: to use one of these
external devices, a droplet is transported to an appropriate
location on-chip and then stored in-place while the operation
is performed.

There has been interest in the development of program-
ming languages and compiler technology targeting DMFBs
in recent years [11]–[41]. As shown in Fig. 4, a “program”
that executes a biological protocol on a DMFB is a sequence
of electrode activations that execute the protocol one step

0278-0070 c⃝ 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

42 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 1, JANUARY 2017

Fig. 3. Basic set of droplet operations supported by a DMFB. Other opera-
tions can be added through sensor integration and/or external devices affixed
to specific regions of the chip.

Fig. 4. Output of a DMFB compiler is a linear state machine that outputs
an electrode activation sequence to execute the protocol. This state machine
should not be confused with the DAG representation of the protocol (Fig. 6).

Fig. 5. Illustration of routing-based synthesis for a single droplet.

at a time. The activation sequence can be viewed as a linear
state machine (a Moore machine) in which the output of each
state is a bit-vector, where each “1” represents an electrode that
is activated and each “0” represents an electrode that is not.

Most compilation work targeting DMFBs assumes that the
execution of operations is constrained to a group of adjacent
electrodes forming a rectangular called “module;” however,
the reconfigurable operations (e.g., mixing and dilution) can
execute by routing the droplets on any sequence of electrodes
on the microfluidic array [11]. One drawback of rectangu-
lar modules is that the droplets will only occupy a subset
of the rectangular region dedicated to the operation at any
given time, which yields poor utilization of spatial resources.
A second drawback is that module selection and placement are
inherently tied to the notion of rectangular mixing modules.

Routing-based synthesis (Fig. 5) is an alternative to module-
based compilation [12]. Routing-based synthesis eliminates
the concept of modules and allows the droplets to move on the
chip on any route during operation execution. Routing-based
synthesis converts concurrent mixing operations into a routing
problem: mixing droplets can move anywhere on the DMFB
as long as they do not inadvertently interfere.

A. Contribution

Routing-based synthesis, as described in [12], supports mix-
ing and dilution operations, but not droplet storage and/or
operations that rely on external devices, such as heating or
detection. Randomly generating droplet movements during
routing-based synthesis leads to livelock and deadlock situ-
ations. We introduce new approaches to droplet movement
generation that significantly reduce the likelihood that these
catastrophic situations occur. We integrate routing-based syn-
thesis with a known effective and efficient scheduling heuristic,
and introduce modifications to compensate for the fact that
operation completion times are not known statically and are
instead determined by the sequence of droplet movements
generated by the algorithm. Lastly, we reduce washing over-
head by shortening the length of the paths that wash droplets
must travel to perform local decontamination. The result of
this effort is an enhanced routing-based synthesis implemen-
tation that supports all known protocol operations and is less
susceptible to failures than the original.

II. RELATED WORK

Fig. 6 illustrates a DMFB compiler. The input is an assay as
a directed acyclic graph (DAG): vertices represent operations
(e.g., input/dispense, mix, detect, etc.), and edges represent
dependencies between operations, i.e., an edge (x, y) indicates
that operation x produces a droplet that will later be consumed
by operation y. The compiler must solve three interdependent
NP-complete problems to produce an executable program to
control the DMFB. The compiler assumes that capacitance
sensors or real-time video monitors detect droplet presence
and that droplets are carried in a filler fluid (e.g., silicone oil)
to prevent evaporation.

A. Scheduling

The compiler must determine the time at which each oper-
ation starts and finishes [13]–[18]. All droplet dependency
constraints, as specified by DAG edges, must be satisfied, i.e.,
for edge (x, y), operation x must finish before y begins. The
number of operations scheduled to execute at any given time
cannot exceed the resource capacity of the DMFB (Fig. 6).
Most schedulers assume that all mixing operations use mod-
ules of the same size; it can also be integrated with a separate
module selection step [19]–[22] mixing and dilution are per-
formed by bringing two (or more) droplets together and
rotating them according to a given pattern [11]. The oper-
ation completion time varies, depending on the size of the
mixer. In general, larger mixers yield shorter operation times,
but consume more on-chip resources, limiting the amount of
parallelism available to perform other operations concurrently.

Existing work in scheduling includes fast, greedy
heuristics [13]–[16], genetic and metaheuristic-based
heuristics [13], [17], and optimal algorithms based on
integer linear programming, which runs in exponential
worst-case time for specific application domains (polymerase
chain reaction (PCR) [18] and in vitro diagnostics [13]). The
scheduler employed by our implementation of routing-based
synthesis is similar to path scheduling [14], which performs
well when spatial resources are limited.

WINDH et al.: PERFORMANCE IMPROVEMENTS AND CONGESTION REDUCTION FOR ROUTING-BASED SYNTHESIS 43

Fig. 6. Illustration of a typical compiler targeting a DMFB: the protocol
to execute is represented as a DAG. The compiler must schedule, place, and
route all operations in order to produce an executable sequence of electrode
activations to automatically run the protocol.

Although many DMFB compiler algorithms include module
selection, it has not been treated as a standalone prob-
lem. For example, several iterative improvement algorithms
randomly vary the module assignment for each protocol
operation, but solve it in conjunction with scheduling and
placement [19]–[22]. Another algorithm performs module
selection as a post-processing phase after scheduling (to reduce
latency), but fails to account for area constraints of the target
chip [17]. Routing-based synthesis sidesteps module selection
by converting executable operations into a routing problem.

B. Placement

If operation x is scheduled to start at time t1 and finish
at time t2, a location on the surface of the chip must be
reserved for x during the time interval; no other operation may
occupy the same location during this time interval in order to
prevent accidental merging and cross-contamination of con-
current operations [23]–[32] (Fig. 6). DMFBs are spatially
parallel and reconfigurable, as the roles played by individ-
ual electrodes vary over the execution of a protocol (e.g.,
transport, storage, mixing, etc.). An effective placer must rep-
resent free space on the chip, and allocate and deallocate
space as operations start and finish; greedy [23], [24], itera-
tive improvement [25], and optimal [26] placement algorithms
have been proposed. Virtual topologies [27]–[30] partition
a DMFB into regions that perform operations with dedicated
routing channels between them; this converts placement into
a simpler binding problem.

In contrast, routing-based synthesis converts placement into
a routing problem. Combined scheduling and placement can
be modeled as a 3-D placement problem, (the third dimen-
sion is time) [31], [32]. This approach is incompatible with
routing-based synthesis, which does not employ any notion of
rectangular (2-D) or cuboid (3-D) modules.

C. Routing

When droplets are produced/consumed by operations, they
are transported from one location on the chip to another, in
accordance with the schedule and placement results [33]–[38].
During transport, droplets must maintain appropriate spacing
(Fig. 7) and may not inadvertently intersect regions of the chip
performing mixing and storage operations [33]. Routing may
be integrated with washing [39]–[41] to clean residue left by
other droplets and completed operations (Fig. 8).

To reduce cross-contamination, these algorithms try to route
droplets along disjoint paths; wash droplets are only intro-
duced when disjoint paths cannot be found. In contrast,
routing-based synthesis moves droplets randomly without pre-
defined starting and ending points; one contribution of this

Fig. 7. Interference region for a droplet (a) at rest and (b) during transport.
If any droplet enters the interference region of another, then they will merge
inadvertently [33].

Fig. 8. Illustration of cross-contamination. (a) Droplets leave residue behind
when traveling across the surface of the chip. (b) When the two droplet routes
intersect, a wash droplet (W) must clean the intersection point before the
second droplet can proceed.

paper is to reduce the likelihood that deadlock or livelock
occurs; our implementation also incorporates wash droplets.

III. ROUTING-BASED SYNTHESIS

This section summarizes routing-based synthesis as
described by Maftei et al. [12]; the limitations of their
approach are described, setting the stage for our corrections,
which are presented in Section IV.

A. Rectangular Mixing Modules

Paik et al. [11] studied the mixing times of rectangular mod-
ules of varying dimensions, as reported in Table I; these results
assume a 1.5 mm electrode pitch, 600 µm gap height, 16 Hz
switching frequency, and 1.4 µL droplets for mixing.

Linear array mixers (1 × N) move a merged droplet in 1-D
(e.g., left/right). Reversing direction causes flow reversibility,
which works against effective mixing; the ratio of forward to
reversing movements is R = (N − 2)/(N − 1), e.g., 2/3 for
a 1 × 4 mixer. Increasing N increases R, but at the expense of
consuming more on-chip area.

In a 2 × 2 mixer, the merged droplet is mixed via rota-
tion about a pivot; all rotations follow one angular direction
(clockwise/counterclockwise); the angular direction does not
reverse. Although the 2 × 2 mixer eliminates flow reversal
effects, a portion of the droplet near the pivot mixes slower
than the rest of the droplet, which slows overall mixing times.

The 2 × 3 mixer eliminates the static pivot, and includes
forward motions in addition to (counter-)clockwise turns. It
offers a significant improvement over the 2 × 2 mixer, and
eliminates the flow reversibility of the 1×4 mixer, although it
is still slower than the 1×4 mixer. This suggests that increase
the ratio of forward movements to both turns and reversals
will have the greatest possible effect on total mixing time.

The 2 × 4 mixer combines the benefits of the 1 × 4 and
2 × 3 mixers, yielding the best overall mixing time. With a
2×4 mixer, a droplet may take many different paths, as shown

44 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 1, JANUARY 2017

TABLE I
TIMES FOR DMFB OPERATIONS INCLUDING MIXING/DILUTIONS

USING VARYING RECTANGULAR DIMENSIONS

Fig. 9. Two mixing paths within a 2 × 4 array mixer that yield optimal
mixing times of 2.9 s as reported by Paik et al. [11].

in Fig. 9(a) and (b). In effect, the routing paths within the
modules have been optimized via routing based synthesis.

B. Routing-Based Mixing

Maftei et al. [12] examined the results of rectangular
mixing modules [11] and determined the percentage of mix-
ing achieved by decomposing the routes within the modules
into basic movements: p0 denotes the percentage of mixing
obtained by moving a droplet forward; p90 denotes the per-
centage of mixing obtained by turning a droplet left or right;
and p180 denotes the percentage obtained by reversing the
direction of the droplet. Maftei et al. [12] further decom-
posed p0 into two separate values, p0

1 when the forward move
is one cell, and p0

2 when the forward movement is two or
more cells.

Let µ = {p0
1, p0

2, p90, p180} be the set of percentages;
Maftei et al. [12] empirically determined the following values
for µ : p0

1 = 0.29%, p0
2 = 0.58%, p90 = 0.1%, and

p180 = −0.5%, which accounts for negative mixing affects
due to flow reversibility. Any sequence of droplet movements
that adds up to 100% can mix two droplets; there is no require-
ment to constrain these movements to a rectangular subregion
of the DMFB.

C. Application Model

An assay is represented as a DAG G = (V, E), as shown
in Fig. 4. Each vertex vi ∈ V is an operation, e.g., mix,
dilute, split, detect, dispense, output, etc. Edge (vi, vj) ∈ E is
a dependency, i.e., operation vi produces a droplet that is used
by subsequent operation vj; vj must wait for all constituent
droplets to arrive before it can start execution. A droplet not
used immediately after it is produced (per the schedule) must
be stored on-chip, consuming spatial area that would be other-
wise be allocated to operations that drive the protocol toward
completion [14].

D. Routing-Based Synthesis Algorithm

Fig. 10 shows pseudocode for routing-based synthesis [12],
which is limited to reconfigurable operations (e.g., mixing) and
wash droplet transport. Nonreconfigurable operations, which
are not supported, include fluid I/O and the usage of external

Fig. 10. Pseudocode for routing-based synthesis [12]. Operations that support
cross-contamination removal are shown in blue.

devices (e.g., heaters, detectors, etc.), where a droplet must
be routed to a specific on-chip region and held in-place; the
latter is mentioned in passing but the algorithms to support it
are not discussed. Likewise, production of waste droplets and
routing droplets off-chip is not addressed.

The inputs to the routing-based synthesis are the DAG
representation of the protocol to execute (G), an array rep-
resenting the DMFB (C), the set of mixing percentages (µ),
and two parameters representing properties of wash droplets
(maxelectrodes and nopart). Each wash droplet has a finite capac-
ity for contamination removal [12]: it can clean maxelectrodes
cells of the DMFB, after which it must be discarded and
replaced with a new wash droplet. Routing-based synthesis,
as described by Maftei et al. [12], partitions the DMFB into

WINDH et al.: PERFORMANCE IMPROVEMENTS AND CONGESTION REDUCTION FOR ROUTING-BASED SYNTHESIS 45

a set of nopart distinct regions: one wash droplet is allocated to
each region, and that wash droplet removes all contamination
within its region and that region alone; when its capacity is
exceeded, it is replaced with a new wash droplet.

A DMFB operates at 100 Hz, meaning that it takes 10 ms
to move a droplet from one electrode to a neighbor. Assuming
fully synchronized droplet movements at equal velocities, we
refer to each 10 ms interval as a time-step. The algorithm starts
at time-step 0. Variable tcurrent tracks the current time-step. For
each protocol operation vi, tstart

i and tfinish
i represent the start

and end times, as computed by the algorithm.
Considering only reconfigurable operations, active droplets

are either the merge or mix state. An active droplet is in the
merge state if it is ready to mix with another droplet, but the
two have not yet merged; it is in the mix state during mixing.
Lists Lmerge and Lmix denote the sets of active droplets in these
states, respectively; Lwash is the set of active wash droplets.

Lines 1–8: The first eight lines initialize the algorithm.
Lmerge contains all droplets that can be dispensed imme-
diately, Lmix is empty, and Lwash contains one droplet per
partition (line 8).

Lines 9–40: The algorithm proceeds until all droplets are
processed, indicated by a non-zero completion time; droplets
are processed in topological order.

Lines 10–15: This for all loop moves all assay droplets in
lists Lmerge and Lmix. Each droplet has at most five possible
moves: {up, down, left, right, hold}. In the case of a hold,
the droplet does not move. The algorithm considers only legal
move operations. If a droplet is at the perimeter of the chip,
it is not allowed to move off of the chip; a droplet cannot
make a move that causes it to inadvertently merge with another
droplet, i.e., droplets have to observe the well-established spac-
ing rules [33] (Fig. 7); lastly, a droplet cannot move onto
a region of the chip that has been contaminated by residue
left by another droplet.

All legal moves are ranked in terms of their profitability.
For a droplet d in Lmerge, profitability is determined based on
whether a given move is toward, neutral, or away from the
droplet d′ with which d is supposed to merge. For droplets
in Lmix profitability is determined by the mixing percentages
stored in set µ (the mixing percentage of a hold is 0%). The
most profitable move is randomly selected with a probability
of 50%, the second most profitable move is randomly selected
with a probability of 33.3%, and the third most profitable move
is randomly selected with a probability of 16.7% (line 11). Any
time a droplet moves onto a new cell, it contaminates that cell
with residue (lines 12–14).

Lines 16–19: When two droplets in Lmerge merge, they
form a single droplet, represented by a successor vertex in
the DAG. The droplets are removed from Lmerge and the suc-
cessor is added to Lmix; mixing commences during the next
time-step.

Lines 20–26: If a droplet in Lmix completes its mixing oper-
ation, then it finishes its operation at the current time-step
(line 22), and is removed from Lmix (line 23). Any successor
operations may commence if all of their predecessors have
finished; if so, they are added to the set Lmerge (lines 23–25).

Lines 27–38: Wash droplets are moved randomly as well;
profitability is computed based on the Manhattan distance
between the current position of the wash droplet and the first
electrode to be cleaned (line 28). If the wash droplet moves

onto a contaminated cell (lines 29–37), then the cell is updated
to reflect the fact that it has been decontaminated (line 30)
and the wash capacity of the wash droplet is reduced by one
(line 31). If the wash droplet’s wash capacity is reduced to
zero (lines 32–35), then the wash droplet is removed from
Lwash (line 33), a new wash droplet is dispensed to take its
place (line 34), and the original wash droplet is set on a path
to a waste reservoir (line 35). Maftei et al. [12] do not describe
precisely how the wash droplet travels to the waste reservoir;
we assume that the mechanism is similar in principle to the
way droplets in Lmerge are handled.

One final implementation option, not discussed above and
omitted from the pseudocode, is to partition the chip [12]
so that each mixing operation occurs in a different partition;
mixing droplets move about randomly within their partitions,
but cannot cross the partition boundary. Individual droplets
may cross partition boundaries to merge, and/or to leave the
chip. This modification prevents cross-contamination between
mixing operations. Depending on the size and dimensions of
each partition, the scheme may degenerate into a traditional
rectangular module-based synthesis scheme.

IV. IMPROVEMENTS TO ROUTING-BASED SYNTHESIS

This section highlights several limitations of routing-based
synthesis as described by Maftei et al. [12], as well as a set
of practical improvements that overcome these limitations.

A. I/O Reservoir Blockage

We have observed specific situations where droplet I/O oper-
ations can lead to deadlocks that cannot be reconciled. The
solution to this problem is to prevent other droplets from enter-
ing a small set of cells around each port, so that droplets can
always have the opportunity to enter/exit the chip.

1) Input Reservoir Blockage: Contaminated cells near an
input reservoir can cause an unfixable deadlock. In Fig. 11(a),
the green droplet has contaminated all cells next to an input
reservoir, except for the cell into which a droplet is dispensed.
In Fig. 11(b), the dispensed droplet cannot move because all
adjacent cells are contaminated (we assume that the droplet
cannot be un-dispensed back into the input reservoir). Cleaning
any of the contaminated adjacent cells would inadvertently
merge the wash droplet with the green droplet.

Fig. 11(c) depicts a solution. Before dispensing a droplet,
all cells within the 2 × 3 region adjacent to the reservoir must
be contamination-free and contain no other droplets. If so, the
dispense operation may proceed; otherwise, it is delayed until
the aforementioned criteria are satisfied. This situation only
occurs with respect to input reservoirs dispensing droplets. It
is impossible for one droplet to trap another that is already on
the chip in the same manner, as contaminating the adjacent
cells would merge them in violation of spacing rules [33].

2) Wash Droplet Input Reservoir Blockage: Fig. 12(a) illus-
trates a situation in which contamination left by a green
droplet traps an orange droplet in the 2 × 3 region adjacent
to a wash droplet reservoir. The input reservoir cannot dis-
pense the wash droplet because it would inadvertently merge
with the orange droplet at any position in the 2 × 3 region.
The problem here arises due to the finite capacity of wash
droplets. Unlike Fig. 11, the location of the orange droplet
does not prevent wash droplets from cleaning cells that the

46 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 1, JANUARY 2017

Fig. 11. (a) Cell adjacent to the input reservoir is not contaminated, so the
input reservoir can safely dispense a droplet. (b) Orange droplet cannot move
since all neighboring cells are contaminated. The wash droplet W cannot clean
the contaminated cells adjacent to the orange droplet without inadvertently
merging the two droplets. (c) To rectify the situation, a droplet can only be
dispensed if all cells in the 2 × 3 region adjacent to the input reservoir are
free of contamination and do not contain any other droplets.

Fig. 12. (a) Droplet is trapped in a 2 × 3 region adjacent to a wash droplet
input reservoir, blocking it. (b) Solution is to immediately inject the next wash
droplet W and store it next to the input reservoir; this ensures that no other
droplets can enter the 2 × 3 region, blocking the wash droplet input reservoir.
If another wash droplet reaches its capacity, W is transported away from the
input reservoir to replace it; a new droplet can be dispensed immediately,
ensuring that no other droplet enters the 2 × 3 region.

green droplet contaminated. If all wash droplets on the chip
have infinite washing capacity, then eventually all cells will
be cleaned; however, with finite capacities, all wash droplets
on may reach their respective capacities before they can clean
these cells. If a wash droplet is at its capacity, it is routed to
a waste reservoir for disposal. If all wash droplets are removed,
then the assay deadlocks, as it is impossible to inject another
wash droplet because the input reservoir is blocked.

One solution is to employ multiple wash droplet dispense
reservoirs; however, the possibility remains that all reservoirs
could be simultaneously blocked under the same scenario
(although the probability of this goes down with each addi-
tional wash droplet reservoir). A second solution is to move
the orange droplet out of blocked region, contaminating it;
the orange droplet is no longer usable and must be sent to
a waste reservoir for disposal. An error recovery procedure can
then be invoked to regenerate the orange droplet [7]; however,
this incurs non-negligible performance overhead and would
lengthen the execution time of the assay significantly.

Fig. 12(b) shows our solution. Each wash droplet reservoir
immediately dispenses a new wash droplet and holds it in-
place until it is needed. When a wash droplet is needed, it is
transported to its decontamination region, and the next wash
droplet is immediately dispensed and held. This eliminates the

Fig. 13. (a) Orange droplet blocks the green droplets that are trying to exit
the chip; the green droplets block the orange droplet’s path out of the way,
while the orange droplet blocks all of the green droplets’ paths to the output
reservoir. (b) Reserving a 2 × 3 region adjacent to the output reservoir ensures
that one orange droplet cannot cause a blockage. (c) However, multiple orange
droplets can still block access to the output reservoir.

deadlock situation shown in Fig. 12(a): contamination could
still trap an assay droplet in a larger region that subsumes
the wash droplet entry point, however, that droplet would be
trapped with an otherwise unused wash droplet, which ensures
that the contamination can and will be removed eventually.

3) Output Reservoir Blockage: Fig. 13(a) illustrates
a situation where a one droplet (orange) blocks several
droplets (green) trying to exit the chip. This situation is dif-
ficult to detect and rectify with 100% certainty, because it
can scale up to an arbitrary number of droplets in the most
general case. In Fig. 13(b), we reserve a 2 × 3 region adja-
cent to the output reservoir; the only droplets that may enter
the region are those in the process of exiting the chip; thus,
one orange droplet cannot block a set of green droplets that
want to exit; however, as shown in Fig. 13(c), a group of five
orange droplets could still cause a similar blockage, although
the likelihood of this situation occurring is much lower than
the single-droplet blockage in Fig. 13(a). Further techniques
to rectify this situation will be discussed in the following
sections.

B. Support for Nonreconfigurable Operations

Maftei et al. [12] categorize I/O and the usage of exter-
nal devices (e.g., heaters and detectors) as nonreconfigurable
operations, because they must occur at specific locations on
the DMFB; transport, mixing, splitting, and merging can
occur anywhere on the device—hence, they are reconfigurable.
Maftei et al. [12] mention that nonreconfigurable operations
involve routing a droplet to a specific (subset of) location(s) on
the DMFB, which can be handled probabilistically (e.g.,
a move toward the target is favorable); however, we have
uncovered several issues left unaddressed by their work.

Without loss of generality, suppose that routing-based syn-
thesis wants to use a heater H to increase the temperature of
droplet d. H is an m × n subregion of the DMFB. Two things
must happen: 1) all droplets other than d must be routed out
of H and may not return into H until the heating operation
completes and 2) d must be routed onto Maftei et al.’s [12],
description addresses the second requirement, but not the first.
Here, we consider droplet output, and operations that use
external modules at prespecified locations on the chip.

1) Output Operations: A droplet d is removed from the
DMFB by routing it to an output reservoir for collection or

WINDH et al.: PERFORMANCE IMPROVEMENTS AND CONGESTION REDUCTION FOR ROUTING-BASED SYNTHESIS 47

a waste reservoir for disposal. Suppose that d becomes ready
for output when it holds a position at DMFB location (x, y).

To route d to the output reservoir, there are two options:
1) precompute a routing path from (x, y) to the output reser-
voir, similar to traditional DMFB routing algorithms [12], and
move d along this path (pausing to prevent interference with
other droplets or 2) transport d from (x, y) to the output reser-
voir probabilistically using routing-based synthesis, similar in
principle to the way that droplets in Lmerge are handled in
Fig. 10. A move is profitable if it transports the droplet toward
the output reservoir, unprofitable if it transports the droplet
away, and neutral if the droplet holds its position.

We chose the latter option because: 1) it allows us to main-
tain uniformity with the routing procedure applied to other
droplets on the chip and 2) it allows us to back out of the out-
put blockage situation shown in Fig. 13(a). Although unlikely,
one or more green droplets could back away from the con-
gested region by the output reservoir, providing a path for
the orange droplet to leave the area, freeing up space for the
green droplets exit the chip. We can also selectively increase
the probability to accept unprofitable moves, increasing the
likelihood of recovering from output reservoir deadlocks.

2) External Modules: In principle, mixing or dilution can
occur anywhere on the DMFB, including on top of an external
device, e.g., a heater, when not in use; however, at some point,
a droplet d may need to use the external device. Then: 1) all
droplets other than d must be moved away from the region
affected by the device and 2) d must be routed to the region.

We refer to an m×n subregion of a DMFB that is affected by
an external device as a module, denoted by M. One solution
is to lock M so that only droplets bound to operations that
use the external device associated with M; the drawback is
that doing so reduces the available on-chip area when external
devices are not used, which limits parallelism. The alternative
is to leave M open for use by reconfigurable operations when
the external device is not in use, and then evict all ongoing
operations from M when the external device is used. We have
taken this approach in our implementation of routing-based
synthesis; we describe the eviction process in detail here.

When no nonreconfigurable operations execute on M
droplets undergoing mixing and transport may enter and exit
M without restriction. When a nonreconfigurable operation vi
executes on M all droplets not bound to M and currently resid-
ing on M must be moved out; no droplets other than those
needed for operation vi may enter M until vi completes.

We tried two schemes to remove droplets from M. The
first forces droplets to move directly out of M, temporarily
bypassing the randomized process of routing-based synthesis.
We observed empirically that this could lead to deadlocks if
there was high congestion surrounding M. The second scheme
employs randomization to remove unwanted droplets from M.
Each cell cj within M is assigned a positive integer value called
the depth of cj, which represents the distance from cj to the
perimeter of M, as shown in Fig. 14(a). For each unwanted
droplet, we temporarily change the objective from minimiz-
ing operation completion time to routing away from M; once
the droplet is removed, the objective then reverts. A droplet
that exits M cannot re-enter M until the nonreconfigurable
operation completes, avoiding deadlocks while clearing M.

During the escape process, a favorable move is one that
moves a droplet within M from a cell having higher depth to

Fig. 14. (a) Assignment of depth values to a detection module M. (b) Red
droplet randomly exits the detection module, while the orange droplet enters
the module for detection. Note that the maroon droplet traverses the module
counter-clockwise at depth level 2, before discovering an exit point.

one having lower depth (i.e., toward the perimeter); moving
a droplet from one cell to a neighbor having the same depth
is a neutral move; negative moves, i.e., moving a droplet from
a lower-depth cell to a higher depth cell (i.e., toward the center)
are not permitted. Fig. 14(b) shows an example: one positive
move is followed by four neutral moves, and then two positive
moves, after which, the droplet fully escapes from M.

Similar to the case of output operations, any droplet that will
use the external device associated with M is transported prob-
abilistically to M using routing-based synthesis; the droplet
may enter M at any time, even while other droplets are still
escaping from M. Probabilistic transport maintains uniformity
with the routing procedure as applied to other droplets, and
prevents deadlock from occurring.

C. Dynamic Adjustment of Droplet Movement Probabilities

The scenario illustrated in Fig. 13(a) can be viewed as either
a deadlock or a livelock, depending on how routing is imple-
mented. If the green droplets exiting the board travel along
precomputed paths without the ability to backtrack, then the
situation is a deadlock, as no droplet can move.

If the green droplets travel probabilistically according to
the principles of routing-based synthesis, then the situation is
more of a livelock: probabilistically, a droplet may accept an
unprofitable move away from the congested region; however,
the following move will most likely be profitable (toward the
exit), thereby restoring the congested state. This is a livelock
because droplets can move, but the congestion is not resolved.

Our solution is to dynamically estimate localized conges-
tion on the DMFB and to use this information to adjust the
probabilities of accepting profitable, neutral, and unprofitable
moves. The estimate must be computationally efficient and
should not significantly increase assay execution time.

In Maftei et al.’s [12] implementation of routing-based syn-
thesis, all droplets in lists Lmix and Lmerge are moved randomly.
All legal moves are enumerated, the profitability of each move
is estimated, and the top three legal moves in terms of prof-
itability are ranked in-order; one of the top three is then chosen
randomly with probabilities p = (50%, 33.3%, 16.7%).

Statically changing the probability values was unsuccess-
ful. Empirically, we observed that increasing the probability

48 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 1, JANUARY 2017

that the most profitable movement is chosen tends to reduce
the completion time of protocol operations when there is
ample space on the chip, but stalls progress when the board
becomes congested. The best way to reduce congestion is for
many droplets on the perimeter of the congested area to back
away; however, reversing direction is unprofitable because of
unmixing [11], [12]. Meanwhile, increasing the likelihood of
selecting a less profitable move tends to reduce congestion,
but does not favor fast protocol completion times.

We achieved a favorable tradeoff between performance
(protocol execution time) and congestion avoidance through
dynamically adjusting the priority scheme by which moves
are selected. We consider three probability sets as follows:

pA = (85%, 10%, 5%) (1)
pB = (50%, 33%, 17%) (2)
pC = (34%, 33%, 33%). (3)

Our first approach was to adjust the probabilities based on
the number of droplets on the board at a given time; increas-
ing the number of droplets tends to increase the likelihood of
congestion, deadlocks/livelocks being the most extreme form.

The problem with this approach is that a relatively small
number of droplets can form a localized deadlock/livelock,
as is the case in Fig. 13(a). It is computationally ineffi-
cient to enumerate different sub-regions of the chip and/or
subsets of droplets to estimate local congestion. Instead,
we turned to a more effective approach based on operation
completion times.

1) Operation-Driven Profitability: This scheme assigns the
probability set based on an estimate of the number of time-
steps required to complete each operation. For example, if
droplets d1 and d2 need to merge, then half of the Manhattan
Distance between them is a reasonable estimate of the num-
ber of movements required to merge the two droplets. For
an ongoing mixing operation, we can estimate the number
of movements required to complete it based on an expected
distribution of droplet movements, each of which contributes
(positively or negatively) to the total mixing time.

A droplet that is effectively stuck due to a deadlock or live-
lock will not advance toward completion of its operation; thus,
we can use the disparity between the expected completion time
and the progress obtained thus far as a proxy for deadlock or
livelock detection. If we suspect that a droplet is deadlocked or
livelocked, we increase the randomness in the probability set
to increase the likelihood of mitigating the deadlock or live-
lock; otherwise, we favor movements that lead to the fastest
possible completion time for the operation.

The scheme is implemented as follows: let Oi be the oper-
ation in question, tcurrent be the current time-step, tstart

i be the
time at which operation Oi started (tstart

i ≤ tcurrent), and tpredicted
i

be the estimated length to complete operation Oi. As there
will be some natural variation in operation completion time
due to the random selection of moves, many operations will
complete after tpredicted

i . The longer any given operation takes
to complete, the more severe we assume that the congestion
must be. In response, we dynamically between the probability
sets, pA, pB, and pC to increase the likelihood that the droplet
successfully moves out of the congested area.

We estimate that congestion occurs when the latency of an
ongoing operation exceeds twice its predicted latency

if tcurrent <= tstart
i + 2 ∗ tpredicted

i

p = pA

else if tcurrent <= tstart
i + 3 ∗ tpredicted

i

p = pB

else
p = pC

end if

A smaller constant value could enable more rapid transitions
between probability sets, but could also lead to more false
positives and increased assay execution times.

D. Congestion-Aware Scheduling

The pseudocode in Fig. 10 dispatches each assay operation
as soon as all of its predecessors complete (except, presum-
ably, and dispensing operations) [12]. This approach may be
ineffective when targeting small chips with limited spatial
resources. The introduction of wash droplets, which perform
a useful and necessary function, also reduce the availability of
spatial resources for assay operations.

To mitigate congestion due to resource limits, we modi-
fied the operation dispatcher (Fig. 10, line 24) to consider the
impact of each operation on resource demand at future points
in the schedule. Motivated by path scheduling [14], which
was shown to be effective when targeting resource-constrained
DMFBs [14], [15], we delay the execution of assay operations
whose completion increases demand for spatial resources.

The independent path priority (IPP) of a DAG vertex v,
denoted ipp(v), is the number of leaf vertices reachable from v;
Fig. 15 shows two examples, where each vertex is labeled
with its IPP value [14, Fig. 6]. The IPP estimates the increase
in resource demand that will occur as a result of executing
the operation. Let R be represent a DMFB’s available spatial
resources, let U be a set of executing operations, S be a set
of operations that are presently stored (presumably consuming
1 spatial resource) and let IPP(U) = ∑

u∈U ipp(u).
The scheduler dispatches a ready-to-execute operation v if

ipp(v) + IPP(U) + |S| ≤ R; in other words, v may exe-
cute if the scheduler believes that present and future demands
for spatial resources from all ongoing operations, plus v, are
within the chip’s capacity. Otherwise, v is delayed until more
resources are available. Ready-to-execute operations are pro-
cessed in increasing order of IPP value, which favors the
dispatch of operations whose fanout trees have low resource
demands; execution of those fanout trees clears space on the
DMFB to execute operations with higher resource demands.

This reduces congestion on-chip, which has two favorable
benefits: 1) it reduces the likelihood of global deadlocks and
livelocks and 2) alleviating congestion increases the likeli-
hood that ongoing operations select profitable, rather than
neutral or unprofitable, moves, thereby favoring faster assay
execution times. With respect to Fig. 15(a), and similar to
path scheduler [14], this approach favors continuing execution
along existing paths that have already been started, as opposed
to starting execution of vertices along a new path.

WINDH et al.: PERFORMANCE IMPROVEMENTS AND CONGESTION REDUCTION FOR ROUTING-BASED SYNTHESIS 49

Fig. 15. Three-level colorimetric protein dilution tree (left) and a PCR mixing
tree (upper right). Vertices are labeled with their IPP values.

Fig. 16. (a) When multiple droplets travel concurrently through a region
allocated to a wash droplet, the washing scheme proposed by Maftei et al. [12]
may yield highly inefficient routes due to the order in which cells to wash
are inserted into a list. (b) Shorter and more concise droplet route as obtained
by our enhanced implementation of washing for routing-based synthesis.

E. Wash Queue Optimization

To facilitate cross-contamination removal, Maftei et al. [12]
partition the DMFB into regions, with one wash droplet allo-
cated to each region. Within a region, each droplet movement
that leaves residue behind is recorded and appended to a list
of cells (a queue) that require washing.

The wash droplet is then routed to each contaminated cell in
the order in which they appear in the list. This approach works
well if at most one droplet at a time contaminates a region:
the list stores the cells along the path taken by the droplet.
However, if multiple contaminating droplets travel through the
region at the same time, the wash droplet route computed by
this algorithm may be inefficient. For example, Fig. 16(a) shows
two droplets moving along the left and right perimeter. Based
on the scheme outlined by Maftei et al. [12] the wash droplet
repeatedly crisscrosses the region, washing one contaminated
cell, per side. Fig. 16(b) depicts a more efficient wash droplet
route that eliminates unnecessary crisscrossing.

Let P be a partition and wp be its corresponding wash
droplet. If no cells in P are contaminated, the correspond-
ing wash droplet is routed to the center of the partition, where
it rests until a protocol droplet enters the partition. P main-
tains a list Lwash(d) of cells within the partition that have been
contaminated by protocol droplet d; we assume that a cell
becomes contaminated when d leaves it by moving to a neigh-
bor. To avoid redundancy, cell c is only added to Lwash(d)
when it becomes contaminated; if d returns to c after several
time-steps (e.g., due to a reversal of direction), but before c has

Fig. 17. Wash droplet routing when multiple droplets contaminate a partition.
(a) Ideal case, in which the wash droplet can wash one path, followed by the
other. (b) More complex case, where the wash droplet cannot fully wash
one path because the droplet that causes the contamination is blocked due
to congestion. (c) After partially decontaminating one path, the wash droplet
cleans the other, allowing the stuck droplet to escape from the congested area.

been decontaminated by wp, then c is not added to Lwash(d)
a second time, because it only needs to be cleaned once.

Let d be the only protocol droplet in partition P. Once the
first contaminated cell c is added to Lwash(d), wash droplet
wp selects c as its destination and is routed there probabilis-
tically. Upon arriving, wp decontaminates c; wp then follows
d based on the ordering of cells in Lwash(d): c, the first entry
in Lwash(d) is removed, and wp selects the following cell in
Lwash(d) (an adjacent neighbor of c) as its next target. To
reduce the likelihood of deadlock wp follows the cells in
Lwash(d) probabilistically. A movement toward the first cell
in Lwash(d), as per the Manhattan distance from d’s location,
is a positive move; neutral and negative moves are handled
similarly.

If d eventually leaves P, wp will decontaminate all cells in
Lwash(d). If d stalls within P (e.g., due to congestion), then wp
may stall as well, as it cannot enter a congested cell adjacent
to d, as per droplet spacing rules [33]. To reduce congestion, it
may be necessary to move wp away from d, which provides d
with the opportunity to backtrack. Hence, wp uses probabilistic
routing to clean the cells in Lwash(d); if wp followed the path
of cells in Lwash(d), exclusively, then it would not be possible
to back off, and deadlocks would be far more likely to occur.

If droplets, d and d′ enter P, then the algorithm must choose
whether to first decontaminate cells in Lwash(d) or Lwash(d′),
and whether or not to decontaminate all cells in one list before
moving on to the other. If wp follows d, and then pauses due to
congestion, it can be beneficial to switch to cleaning the cells
in Lwash(d′) while removing d from the congestion region.

Fig. 17 provides an illustrative example. In Fig. 17(a),
there is no congestion, so the wash droplet can clean all
cells contaminated by the orange droplet before cleaning the
cells contaminated by the green droplet. In Fig. 17(b), con-
gestion stops the orange droplet at the partition exit. Rather
than waiting for the orange droplet to move, the wash droplet
cleans the cells contaminated by the green droplet, as shown
in Fig. 17(c); this opens up a path by which the orange droplet
can move out of the congested region; the wash droplet then
cleans the remaining cells contaminated by the orange droplet.

We consider wp to be congested if it follows a path of cells
in Lwash(d), but does not advance for T time-steps, where T is
a threshold. If wp is congested, then it becomes free to select
another list of contaminated cells Lwash(d′) to follow. If there
are multiple available lists, the one whose first cell is clos-
est to wp’s current position, in terms of Manhattan distance,

50 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 1, JANUARY 2017

is chosen. This approach readily generalizes to any number of
protocol droplets in a partition.

V. SIMULATION RESULTS

We implemented our routing-based synthesis algorithms in
a publicly available open source DMFB synthesis tool [42].
All simulations were run on a 15 × 9 DMFB with six 3 × 4
detection modules. We assume a 100 Hz actuation frequency
for droplet movements; in other words, it takes 10 ms to move
a droplet from its current position to a neighboring cell. When
washing is enabled, we use nine wash droplets with capacity
of 1024, unless stated otherwise; when washing is disabled,
the simulator ignores contamination and droplets may cross
paths at-will. Starting with the baseline method we offer five
enhancements that can be independently enabled or disabled,
yielding 25 = 32 algorithmic configurations when washing is
enabled, and 24 = 32 configurations when washing is disabled.

1) Base: The baseline routing-based synthesis
algorithm [12] (Fig. 10) extended to utilize the
six detectors (Section IV-B).

2) In: Input reservoir congestion alleviation
(Figs. 11 and 12); a 2 × 3 region surrounding
each input reservoir is reserved to ensure that droplets
can safely enter the board; this reduces the amount of
spatial parallelism on the chip.

3) Out: Output reservoir congestion alleviation (Fig. 13);
a 2 × 3 region surrounding each output reservoir is
reserved to reduce the likelihood of congestion-induced
deadlock; this also reduces the amount of spatial paral-
lelism on the chip.

4) OdP: Dynamic adjustment of droplet movement
probabilities based on operation-driven profitability
(Section IV-C).

5) IPP: IPP-based congestion-aware scheduling
(Section IV-D).

6) WQ: Wash Queue optimization (Section IV-E).
For example, In-Out-OdP represents a run with the In, Out,

and OdP enhancements enabled, and IPP and WQ disabled.
For each experiment (assay/algorithmic configuration), we

perform multiple runs (1000, 100, or 50, depending on the
size of the assay) with different random number seeds. First,
we report the success rate (the percentage of runs that execute
to completion). For the successful runs, we report the average
assay execution time (time-steps), the standard deviation, and
the minimum and maximum execution times.

The overall quality of results depends on the context in
which the algorithm is employed. In an offline context, there
may be ample time to perform hundreds or thousands of
runs using multiple algorithmic configurations, in search of
one solution that minimizes the overall execution time. In an
online context, where computation time is limited and the user
expects real-time execution of an assay, the most important
metrics are the success rate, average execution time, and stan-
dard deviation. Presumably, large variations in assay execution
time for successful runs are due to the probabilistic occur-
rence of localized congestion, and the average overhead due
to detection and recovery (e.g., OdP). Without OdP, deadlocks
are much more likely, as reported in our results.

In principle, online deadlock recovery could be achieved
by merging and contaminating some droplets, moving the

TABLE II
ASSAY EXECUTION TIMES (TIME-STEPS) FOR DIFFERENT ALGORITHMIC
CONFIGURATIONS OF ROUTING-BASED SYNTHESIS ON THE PCR ASSAY

(WASHING DISABLED); ALL RUNS COMPLETED SUCCESSFULLY

TABLE III
ASSAY EXECUTION TIMES (TIME-STEPS) FOR DIFFERENT ALGORITHMIC

CONFIGURATIONS OF ROUTING-BASED SYNTHESIS ON THE
PCR ASSAY (WASHING ENABLED)

contaminated droplets to a waste reservoir, and invoking an
error recovery procedure [7]; however, this would increase
execution time significantly. We do not investigate this here.

A. PCR Mixing Tree

The first experiment evaluates routing-based synthesis on a
seven-node, three-level PCR mixing tree assay (PCR) [18]; see
Fig. 18 (right). We performed 1000 runs for each configuration
with washing disabled, none of which deadlocked, due to the
small size of the assay relative to the spatial area of the DMFB.

Table II presents the results of this experiment. The PCR
mixing tree is relatively small, so there is minimal competi-
tion for spatial DMFB resources. As a result: IPP offers no
improvement over the baseline; OdP alleviates some local-
ized congestion, thus improving all metrics; IPP-OdP and
In-Out-IPP-OdP offers comparable results to OdP.

Table III presents similar results when washing is enabled:
IPP is ineffective; OdP-WQ reduces the average execution
time and best/worst-case results, but increases the standard
deviation, as the best-case results are significantly better than
for IPP; IPP-OdP-WQ and In-Out-IPP-OdP-WQ yield com-
parable results to OdP-WQ. Even with nine droplets on the
board, there were no significant resource constraints.

To summarize, the results reported in Tables II and III show
indicate that only OdP is effective in the absence of resource
constraints, as it detects and alleviates localized congestion.

B. Five-Level Exponential Protein Dilution Assay

The second experiment considers a colorimetric protein
dilution tree with five-levels of splitting at the top (PS-5) [14];
for reference, the tree in Fig. 15 only has three levels. The PS-5
DAG has 543 vertices: 256 inputs, 32 splits, 224 mix/dilution
operations, and 32 detection operations. Referring back to
Fig. 15, the detection operations are the leaf nodes of the
DAG, i.e., those without successors. We performed 100 runs,
with and without washing, for each algorithmic configuration.
Tables IV and V report the results of this experiment.

With washing enabled (Table V), Base achieved a miserable
10% success rate; adding IPP and OdP in isolation increased
the success rate to 25% and 80%, respectively. Adding input

WINDH et al.: PERFORMANCE IMPROVEMENTS AND CONGESTION REDUCTION FOR ROUTING-BASED SYNTHESIS 51

TABLE IV
SUCCESS RATE AND ASSAY EXECUTION TIMES (TIME-STEPS) FOR
DIFFERENT ALGORITHMIC CONFIGURATIONS OF ROUTING-BASED

SYNTHESIS ON THE PS-5 ASSAY (WASHING DISABLED)

TABLE V
SUCCESS RATE AND ASSAY EXECUTION TIMES (TIME-STEPS) FOR
DIFFERENT ALGORITHMIC CONFIGURATIONS OF ROUTING-BASED

SYNTHESIS ON THE PS-5 ASSAY (WASHING ENABLED)

and output reservoir congestion alleviation increased the suc-
cess rates to 100%, and, once again, the combination of all
four enhancements (other than WQ) yielded the best results
in terms of assay execution time; a detailed analysis of WQ
is deferred to the next subsection.

The introduction of wash droplets (nine in this experiment)
increased competition for limited spatial resources; a separate
experiment using the In configuration (not shown in Table V)
achieved a 100% success rate, indicating that the situations
shown in Figs. 11 and 12 cause a significant number of dead-
locks; the situation shown in Fig. 13 did not occur in these
experiments (an unreported experiment using the out configu-
ration had an 8% success rate); however, we did observe this
situation at many points during the process of developing and
refining the enhancements reported here.

Unlike Table IV, OdP, rather than IPP, was responsible for
the most significant reductions in the standard deviation and
maximum assay execution times reported over the 100 runs.
This result suggests that OdP has a much greater impact when
there is greater competition for spatial resources (due to the
nine wash droplets in conjunction with the sufficiently large
PS-5 assay). That being said, IPP still offers some performance
benefits: for example, In-Out-OdP-IPP reduced the average
assay execution time by 4.8% compared to In-Out-OdP.

OdP (considering only the successful runs) attained the low-
est average execution time, while IPP obtained the fastest
individual run. These two algorithms exhibited 80% and 25%
success rates, respectively, along with very high standard devi-
ations, rendering them useful in an offline context. These
configurations may be capable of finding very good quality
solutions for probabilistically “lucky” runs where I/O reser-
voir congestion does not occur. For these runs, the In and Out
configuration options offer no benefit while consuming spatial
resources that could otherwise be used for operations.

C. Impact of Wash Queue Optimization

Our next experiment evaluates the impact of the WQ config-
uration on the success rate and assay execution time of PS-5 on
a 9 × 15 DMFB, with three, six, and nine wash droplets

TABLE VI
SUCCESS RATE AND ASSAY EXECUTION TIMES (TIME-STEPS) FOR
DIFFERENT ALGORITHMIC CONFIGURATIONS OF ROUTING-BASED

SYNTHESIS ON THE PS-5 ASSAY WHILE VARYING THE
NUMBER OF WASH DROPLETS

(IN-OUT-IPP-ODP VERSUS IN-OUT-IPP-ODP-WQ)

using two algorithmic configurations: 1) In-Out-IPP-OdP and
2) In-Out-IPP-OdP-WQ. Hundered runs were performed for
each configuration (algorithmic + number of wash droplets).
Table VI reports the results of this experiment.

Success rates of 100% were achieved with six and nine
wash droplets, regardless of whether or not WQ is enabled.
For six wash droplets, enabling WQ reduced the average assay
execution time by 3.1%; for nine wash droplets, enabling WQ
increased the average assay execution time by a statistically
insignificant factor of 0.76%. As the number of wash droplets
on-chip increases, the likelihood of multiple assay droplets
simultaneously traveling through the region assigned to a given
wash droplet decreases; thus, the impact of WQ lessens; at
the same time, increasing the number of wash droplets on-
chip benefits all assay execution time metrics, and lowers the
standard deviation among execution times.

With three wash droplets, WQ improves all reported metrics.
These results suggest that inefficient washing (without WQ)
leads to deadlocks that are induced, in part, by reduced spatial
parallelism, as contaminated cells are unusable; additionally,
wash droplets may themselves be deadlocked, and are thus
unable to clean contaminated regions of the chip.

These results indicate that increasing the number of wash
droplets on-chip increases overall performance. Clearly, there
must be a limit to this benefit, as an exorbitant number of
wash droplets would cause congestion and lead to deadlocks.

In practice, this limit would depend on the DMFB area and
the assay’s demand for spatial resources, however, it is not our
objective to quantify this limit here. Meanwhile, decreasing
the number of wash droplets increases the favorable impact
of WQ. As wash droplets are relatively cheap compared to
samples and reagents [43], [44], we suspect that a typical user
would opt for a relatively large number of wash droplets on-
chip (i.e., nine in this case) in order to optimize performance.

D. Seven-Level Exponential Protein Dilution Assay

This experiment considers a seven-level exponential pro-
tein dilution assay (PS-7) on a 9 × 15 DMFB with washing
enabled to compare the In-Out-OdP-WQ and In-Out-IPP-OdP-
WQ configurations. We ran each configuration 50 times due to
the large assay. Table VII reports the result of this experiment.

The success rate of IPP was 96% in both cases, sug-
gesting that it should be viewed as a performance opti-
mization, not a deadlock prevention strategy. IPP improved
all execution time metrics: across the 50 runs, IPP reduced
average execution time by 19%, the standard deviation by
53%, and the minimum and maximum execution times by

52 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 1, JANUARY 2017

TABLE VII
SUCCESS RATES AND ASSAY EXECUTION TIMES (TIME-STEPS)

FOR A SEVEN-LEVEL EXPONENTIAL PROTEIN DILUTION
ASSAY (IPP ENABLED/DISABLED)

Fig. 18. Impact of wash droplet capacity on execution time (time-steps) on
the PS-5 assay. Hundered runs were using different random number seeds at
each wash droplet capacity; for each capacity, the maximum, minimum, and
average assay execution time are reported.

13% and 21%, respectively. By limiting the number of concur-
rent operations based on the availability of on-chip resources,
IPP enables the operations that are executing to pick more
profitable moves; without IPP, more operations execute con-
currently, but they choose the most profitable moves with much
lower frequency, thus increasing assay execution time. These
results confirm the observations about IPP from Section V-B.

E. Impact of Wash Droplet Capacity

In this experiment, we ran the PS-5 assay on a 9 × 15
DMFB using the In-Out-IPP-OdP-WQ configuration with nine
wash droplets using the following wash droplet capacities:
{16, 32, 64, 128, 256, 512, 1024, 2048, 4096}. Hundered runs
were performed for each wash droplet capacity. Fig. 18 reports
the minimum, average, and maximum, assay execution time
for each capacity. Four of the 900 runs in this experiment
failed: one each for capacities of 16 and 512, and two for
capacities of 64. Failed runs do not contribute to the averages
in Fig. 18.

Fig. 18 shows that the wash droplet capacity affects the
maximum assay execution time, especially at lower capacities
(16, 32) far more than it affects the average or minimum assay
execution times at all capacities. For wash droplet capacities
that exceed 64, the relative impact on minimum or average
assay execution time is quite small.

In a realistic deployment scenario, the washing capacity of
a droplet will depend on physical properties of the DMFB,
samples and reagents used in the experiment, and the chosen
washing solution. If the cost of the washing solution is an
issue, then the benefits of choosing a solution that can clean
more than 64 cells per droplet is marginal at best.

Fig. 19. Comparison between module-based and routing-based synthesis on
a family of exponential protein dilution trees.

F. Comparison With Module-Based Synthesis

Lastly, we perform a scalability study that compares the
performance of routing-based synthesis with the traditional
approach of module-based synthesis. The benchmarks used
in this paper are a sequence of exponential protein dilution
assays, {PS − k|1 ≤ k ≤ 7} (“PS” stands for “protein split”).
PS-k has k levels of splitting (e.g., the colorimetric protein
dilution tree in Fig. 15 is PS-3), and produces a tree with 2k

paths emanating from the root node; thus, this particular class
of assays exhibits exponential growth in terms of parameter k.

For module-based synthesis, we use path scheduling [13],
placement based on a virtual topology [30], and a maze rout-
ing algorithm introduced by Roy et al. [38]. We selected path
scheduling because it outperformed other heuristics for the
PS-k family of benchmarks in prior studies [14], [15].

We ran routing-based synthesis with and without wash
droplet routing. With washing disabled, we used the In-Out-
OdP-IPP configuration, and with washing enabled, we used the
In-Out-OdP-IPP-WQ configuration. We performed 100 runs
for PS-1, PS-2, and PS-3, 75 runs for PS-4, PS-5, and PS-6,
and 50 runs for PS-7; we report the minimum (Min.), max-
imum (Max.), and average (Avg.) execution times for each
benchmark, with and without washing enabled. Fig. 19 com-
pares these results with module-based synthesis.

Module-based synthesis exhibited longer execution times
than routing-based synthesis without washing for all seven of
the PS-k benchmarks. The performance gap starts narrow, and
becomes more pronounced as k increases, with a dramatic
widening at PS-7.

Module-based synthesis approximately tracks the aver-
age execution time of routing-based synthesis with washing
enabled for PS-1..3. At PS-3, the execution time curves
cross; module-based synthesis outperforms routing-based syn-
thesis with washing from PS-3..6, with a clear improvement
over the best routing-based synthesis run (Min.) at PS-6.
Cross-contamination and the presence of wash droplets on-
chip increase operation latencies for routing-based synthesis in
three ways: 1) there are more droplets on-chip due to the nine
wash droplets; 2) operation latencies increase due to pauses
waiting for contamination removal; and 3) contaminated cells
reduce the available area for droplet movement. Module-based
synthesis does not suffer these drawbacks, as contamination is
removed during routing [39]–[41], and assay execution time
is dominated by the schedule, not routing [13], [33].

WINDH et al.: PERFORMANCE IMPROVEMENTS AND CONGESTION REDUCTION FOR ROUTING-BASED SYNTHESIS 53

For PS-7, the execution latency of module-based synthesis
is 7.1× longer than the average execution time of routing-
based synthesis with washing enabled. Recall that we use a
15 × 9 DMFB for all benchmarks. Routing-based synthesis
retains two advantages.

1) The module abstraction limits the spatial parallelism
available to the scheduler for module-based synthesis;
in contrast, the congestion-aware scheduling mechanism
employed by routing-based synthesis is more aggres-
sive and enables routing-based synthesis to execute more
operations in parallel.

2) Routing-based synthesis has the probabilistic oppor-
tunity to execute faster operations by choosing more
profitable movements than the limited set of movements
allowable within a module. Thus, when on-chip resource
constraints become stringent, routing-based synthesis
outperforms module-based synthesis.

VI. CONCLUSION

Routing-based synthesis, as initially conceived [12], did not
support nonreconfigurable operations and was susceptible to
both livelock and deadlock (Figs. 11–13), often occurring in
locally congestion regions of a DMFB. This paper overcomes
these drawbacks through: 1) the introduction of algorithms to
support nonreconfigurable operations; 2) techniques to detect
operations slowed by congestion; and 3) techniques to allevi-
ate localized livelock and deadlock by dynamically throttling
the droplet movement probabilities. Routing-based synthe-
sis yields faster assay execution times than module-based
synthesis when parallelism is limited.

REFERENCES

[1] M. J. Jebrail, M. S. Bartsch, and K. D. Patel, “Digital microfluidics:
A versatile tool for applications in chemistry, biology, and medicine,”
Lab Chip, vol. 12, no. 14, pp. 2452–2463, Jul. 2012. [Online]. Available:
http://dx.doi.org/10.1039/C2LC40318H

[2] M. G. Pollack, A. D. Shenderov, and R. B. Fair, “Electrowetting-
based actuation of droplets for integrated microfluidics,” Lab
Chip, vol. 2, no. 2, pp. 96–101, Mar. 2002. [Online]. Available:
http://dx.doi.org/10.1039/b110474h

[3] J. H. Noh, J. Noh, E. Kreit, J. Heikenfeld, and P. D. Rack,
“Toward active-matrix lab-on-a-chip: Programmable electrofluidic con-
trol enabled by arrayed oxide thin film transistors,” Lab Chip,
vol. 12, no. 2, pp. 353–360, Feb. 2012. [Online]. Available:
http://dx.doi.org/10.1039/c1lc20851a

[4] B. Hadwen et al., “Programmable large area digital microfluidic
array with integrated droplet sensing for bioassays,” Lab Chip,
vol. 12, no. 18, pp. 3305–3313, May 2012. [Online]. Available:
http://dx.doi.org/10.1039/c2lc40273d

[5] Y. Luo, B. B. Bhattacharya, T.-Y. Ho, and K. Chakrabarty, “Optimization
of polymerase chain reaction on a cyberphysical digital microfluidic
biochip,” in Proc. ICCAD, San Jose, CA, USA, 2013, pp. 622–629.
[Online]. Available: http://dx.doi.org/10.1109/ICCAD.2013.6691181

[6] Y. Luo, K. Chakrabarty, and T.-Y. Ho, “Error recovery in cyberphysical
digital microfluidic biochips,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 32, no. 1, pp. 59–72, Jan. 2013. [Online]. Available:
http://dx.doi.org/10.1109/TCAD.2012.2211104

[7] Y. Zhao, T. Xu, and K. Chakrabarty, “Integrated control-path design and
error recovery in the synthesis of digital microfluidic lab-on-chip,” ACM
J. Emerg. Technol. Comput. Syst., vol. 6, no. 3, Aug. 2010, Art. no. 11.
[Online]. Available: http://dx.doi.org/10.1145/1777401.1777404

[8] M. A. Murran and H. Najjaran, “Capacitance-based droplet
position estimator for digital microfluidic devices,” Lab Chip,
vol. 12, no. 11, pp. 2053–2059, Mar. 2012. [Online]. Available:
http://dx.doi.org/10.1039/c2lc21241b

[9] S. C. Shih, I. Barbulovic-Nad, X. Yang, R. Fobel, and A. R. Wheeler,
“Digital microfluidics with impedance sensing for integrated
cell culture and analysis,” Biosens. Bioelectron., vol. 42, no. 4,
pp. 314–320, Apr. 2013. [Online]. Available: http://dx.doi.org/
10.1016/j.bios.2012.10.035

[10] K. Choi et al., “Automated digital microfluidic platform for magnetic-
particle-based immunoassays with optimization by design of exper-
iments,” Anal. Chem., vol. 85, no. 20, pp. 9638–9646, Aug. 2013.
[Online]. Available: http://dx.doi.org/10.1021/ac401847x

[11] P. Paik, V. K. Pamula, and R. B. Fair, “Rapid droplet mixers for digital
microfluidic systems,” Lab Chip, vol. 3, no. 4, pp. 253–259, Sep. 2003.
[Online]. Available: http://dx.doi.org/10.1039/b307628h

[12] E. Maftei, P. Pop, and J. Madsen, “Routing-based synthesis
of digital microfluidic biochips,” J. Design Autom. Embedded
Syst., vol. 16, no. 1, pp. 19–44, Mar. 2012. [Online]. Available:
http://dx.doi.org/10.1007/s10617-012-9083-0

[13] F. Su and K. Chakrabarty, “High-level synthesis of digital
microfluidic biochips,” ACM J. Emerg. Technol. Comput. Syst.,
vol. 3, no. 4, Jan. 2008, Art. no. 16. [Online]. Available:
http://dx.doi.org/10.1145/1324177.1324178

[14] D. Grissom and P. Brisk, “Path scheduling on digital microfluidic
biochips,” in Proc. DAC, San Francisco, CA, USA, 2012, pp. 26–35.
[Online]. Available: http://dx.doi.org/10.1145/2228360.2228367

[15] K. O’Neal, D. Grissom, and P. Brisk, “Force-directed list
scheduling for digital microfluidic biochips,” in Proc. VLSI-
SoC, Santa Cruz, CA, USA, 2012, pp. 7–11. [Online]. Available:
http://dx.doi.org/10.1109/VLSI-SoC.2012.6378997

[16] C.-H. Liu, K.-C. Liu, and J.-D. Huang, “Latency-optimization synthe-
sis with module selection for digital microfluidic biochips,” in Proc.
SOCC, Erlangen, Germany, 2013, pp. 159–164. [Online]. Available:
http://dx.doi.org/10.1109/SOCC.2013.6749681

[17] A. J. Ricketts, K. Irick, N. Vijaykrishnan, and M. J. Irwin,
“Priority scheduling in digital microfluidics-based biochips,” in
Proc. DATE, Munich, Germany, 2006, pp. 1–6. [Online]. Available:
http://dx.doi.org/10.1109/DATE.2006.244178

[18] J. Ding, K. Chakrabarty, and R. B. Fair, “Scheduling of microflu-
idic operations for reconfigurable two-dimensional electrowetting
arrays,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 20, no. 12, pp. 1463–1468, Dec. 2001. [Online]. Available:
http://dx.doi.org/10.1109/43.969439

[19] T. Xu and K. Chakrabarty, “Integrated droplet routing and defect toler-
ance in the synthesis of digital microfluidic biochips,” ACM J. Emerg.
Technol. Comput. Syst., vol. 4, no. 3, Aug. 2008, Art. no. 11. [Online].
Available: http://dx.doi.org/10.1145/1389089.1389091

[20] T. Xu, K. Chakrabarty, and F. Su, “Defect-aware high-level synthesis
and module placement for microfluidic biochips,” IEEE Trans. Biomed.
Circuits Syst., vol. 2, no. 1, pp. 50–62, Mar. 2008. [Online]. Available:
http://dx.doi.org/10.1109/TBCAS.2008.918283

[21] E. Maftei, P. Pop, and J. Madsen, “Tabu search-based synthe-
sis of digital microfluidic biochips with dynamically reconfig-
urable non-rectangular devices,” J. Design Autom. Embedded Syst.,
vol. 14, no. 3, pp. 287–307, Sep. 2010. [Online]. Available:
http://dx.doi.org/10.1007/s10617-010-9059-x

[22] E. Maftei, P. Pop, and J. Madsen, “Module-based synthesis of
digital microfluidic biochips with droplet-aware operation execu-
tion,” ACM J. Emerg. Technol. Comput. Syst., vol. 9, no. 1,
Feb. 2013, Art. no. 2. [Online]. Available: http://dx.doi.org/10.1145/
2422094.2422096

[23] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast template place-
ment for reconfigurable computing systems,” IEEE Des. Test Comput.,
vol. 17, no. 1, pp. 68–83, Jan./Mar. 2000. [Online]. Available:
http://dx.doi.org/10.1109/54.825678

[24] C. C.-Y. Lin and Y.-W. Chang, “Cross-contamination aware
design methodology for pin-constrained digital microfluidic
biochips,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 30, no. 6, pp. 817–828, Jun. 2011. [Online]. Available:
http://dx.doi.org/10.1145/1837274.1837438

[25] F. Su and K. Chakrabarty, “Module placement for fault-tolerant
microfluidics-based biochips,” ACM Trans. Design Autom. Electron.
Syst., vol. 11, no. 3, pp. 682–710, Jul. 2006. [Online]. Available:
http://dx.doi.org/10.1145/1142980.1142987

[26] C. Liao and S. Hu, “Multiscale variation-aware techniques for high-
performance digital microfluidic lab-on-a-chip component placement,”
IEEE Trans. Nanobiosci., vol. 10, no. 1, pp. 51–58, Mar. 2011. [Online].
Available: http://dx.doi.org/10.1109/TNB.2011.2129596

54 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 1, JANUARY 2017

[27] E. J. Griffith, S. Akella, and M. K. Goldberg, “Performance
characterization of a reconfigurable planar-array digital microflu-
idic system,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 25, no. 2, pp. 345–357, Feb. 2006. [Online]. Available:
http://dx.doi.org/10.1109/TCAD.2005.859515

[28] D. Grissom and P. Brisk, “A high-performance online assay
interpreter for digital microfluidic biochips,” in Proc. GLSVLSI,
Salt Lake City, UT, USA, 2012, pp. 103–106. [Online]. Available:
http://dx.doi.org/10.1145/2206781.2206808

[29] D. Grissom and P. Brisk, “A field-programmable pin-constrained digital
microfluidic biochip,” in Proc. DAC, Austin, TX, USA, 2013, pp. 1–9.
[Online]. Available: http://dx.doi.org/10.1145/2463209.2488790

[30] D. T. Grissom and P. Brisk, “Fast online synthesis of digital microflu-
idic biochips,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 33, no. 3, pp. 356–369, Mar. 2014. [Online]. Available:
http://dx.doi.org/10.1109/TCAD.2013.2290582

[31] P.-H. Yuh, C.-L. Yang, and Y.-W. Chang, “Placement of defect-
tolerant digital microfluidic biochips using the T-tree formulation,” ACM
J. Emerg. Technol. Comput. Syst., vol. 3, no. 3, Nov. 2007, Art. no. 13.
[Online]. Available: http://dx.doi.org/10.1145/1295231.1295234

[32] Y.-H. Chen, C.-L. Hsu, L.-C. Tsai, T.-W. Huang, and T.-Y. Ho,
“A reliability-oriented placement algorithm for reconfigurable digi-
tal microfluidic biochips using 3-D deferred decision making tech-
nique,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 32, no. 8, pp. 1151–1162, Aug. 2013. [Online]. Available:
http://dx.doi.org/10.1109/TCAD.2013.2249558

[33] F. Su, W. Hwang, and K. Chakrabarty, “Droplet routing in the synthe-
sis of digital microfluidic biochips,” in Proc. DATE, Munich, Germany,
2006, pp. 1–6. Available: http://dx.doi.org/10.1109/DATE.2006.244177

[34] K. F. Böhringer, “Modeling and controlling parallel tasks in droplet-
based microfluidic systems,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 25, no. 2, pp. 334–344, Feb. 2006. [Online].
Available: http://dx.doi.org/10.1109/TCAD.2005.855958

[35] M. Cho and D. Z. Pan, “A high-performance droplet routing algo-
rithm for digital microfluidic biochips,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 27, no. 10, pp. 1714–1724, Oct. 2008.
[Online]. Available: http://dx.doi.org/10.1145/1353629.1353672

[36] P.-H. Yuh, C.-L. Yang, and Y.-W. Chang, “BioRoute: A network-
flow-based routing algorithm for the synthesis of digital microflu-
idic biochips,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 27, no. 11, pp. 1928–1941, Nov. 2008. [Online]. Available:
http://dx.doi.org/10.1109/TCAD.2008.2006140

[37] T.-W. Huang and T.-Y. Ho, “A fast routability- and performance-
driven droplet routing algorithm for digital microfluidic biochips,”
in Proc. ICCD, 2009, pp. 445–450. [Online]. Available:
http://dx.doi.org/10.1109/ICCD.2009.5413119

[38] P. Roy, H. Rahaman, and P. Dasgupta, “A novel droplet rout-
ing algorithm for digital microfluidic biochips,” in Proc. GLSVLSI,
Providence, RI, USA, 2010, pp. 441–446. [Online]. Available:
http://dx.doi.org/10.1145/1785481.1785583

[39] T.-W. Huang, C.-H. Lin, and T.-Y. Ho, “A contamination aware
droplet routing algorithm for the synthesis of digital microfluidic
biochips,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 29, no. 11, pp. 1682–1695, Nov. 2010. [Online]. Available:
http://dx.doi.org/10.1109/TCAD.2010.2062770

[40] Y. Zhao and K. Chakrabarty, “Cross-contamination avoidance for droplet
routing in digital microfluidic biochips,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 31, no. 6, pp. 817–830, Jun. 2012.
[Online]. Available: http://dx.doi.org/10.1109/TCAD.2012.2183369

[41] Q. Wang, Y. Shen, H. Yao, T.-Y. Ho, and Y. Cai, “Practical
functional and washing droplet routing for cross-contamination
avoidance in digital microfluidic biochips,” in Proc. DAC,
San Francisco, CA, USA, 2014, pp. 1–6. [Online]. Available:
http://dx.doi.org/10.1145/2593069.2593189

[42] D. Grissom et al., “A digital microfluidic biochip synthesis framework,”
in Proc. VLSI-SoC, Santa Cruz, CA, USA, 2012, pp. 177–182. [Online].
Available: http://dx.doi.org/10.1109/VLSI-SoC.2012.6379026

[43] Y.-L. Hsieh, T.-Y. Ho, and K. Chakrabarty, “A reagent-saving mixing
algorithm for preparing multiple-target biochemical samples using dig-
ital microfluidics,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 31, no. 11, pp. 1656–1669, Nov. 2012. [Online]. Available:
http://dx.doi.org/10.1109/TCAD.2012.2202396

[44] J.-D. Huang, C.-H. Liu, and T.-W. Chiang, “Reactant minimiza-
tion during sample preparation on digital microfluidic biochips
using skewed mixing trees,” in Proc. ICCAD, San Jose, CA,
USA, 2012, pp. 377–383. [Online]. Available: http://dx.doi.org/10.1145/
2429384.2429464

Skyler Windh received the B.S. degree in com-
puter science from the University of California at
Riverside (UCR), Riverside, CA, USA, where he is
currently pursuing the Ph.D. degree.

His current research interests include the usage
of FPGAs and GPUs to accelerate database and
data mining applications.

Calvin Phung received the B.S. degree in computer
science from the University of California at
Riverside (UCR), Riverside, CA, USA, in 2012,
where he is currently pursuing the Ph.D. degree.

He is the Leading Engineer for the first
brain-training game with the Brain Game
Center, UCR, a collaborative project between the
Computer Graphics and the Cognitive Neuroscience
Laboratory. His current research interests include
machine learning to predict the performance in
future sessions for general cognitive training

applications to provide challenging, but not overwhelming, application
experiences for the user.

Daniel T. Grissom received the B.S. degree in com-
puter engineering from the University of Cincinnati,
Cincinnati, OH, USA, in 2008, and the M.S.
and Ph.D. degrees in computer science from the
University of California at Riverside, Riverside, CA,
USA, in 2011 and 2014, respectively.

He is currently an Assistant Professor with
Azusa Pacific University, Azusa, CA, USA.

Paul Pop (M’99) received the Ph.D. degree
in computer systems from Linköping University,
Linköping, Sweden, in 2003.

He is a Professor with the DTU Compute,
Technical University of Denmark, Kongens Lyngby,
Denmark. His current research interests include
system-level design of embedded systems. He has
published extensively in the above area.

Dr. Pop was a recipient of the Best Paper Award
at the DATE 2005, RTiS 2007, CASES 2009, and
MECO 2013 conferences, the EDAA Outstanding

Dissertations Award (co-supervisor), in 2011, and the Best Paper Award at
the CASES 2009 conference. Since 2008, he has also addressed computer-
aided design methods for biochips. He has co-organized and participated in
tutorials and special sessions on CAD for biochips at conferences such as
SOCC 2011, ESWEEK 2011, EMBC 2015, and ETS 2015.

Philip Brisk (M’09) received the B.S., M.S., and
Ph.D. degrees from the University of California at
Los Angeles, Los Angeles, CA, USA, in 2002,
2003, and 2006, respectively, all in computer
science.

From 2006 to 2009, he was a Post-Doctoral
Scholar with the Processor Architecture Laboratory,
School of Computer and Communication Sciences,
École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland. He is an Associate
Professor with the Department of Computer Science

and Engineering, University of California at Riverside, Riverside, CA,
USA. His current research interests include programmable microfluidics,
FPGAs, compilers, and design automation and architecture for application-
specific processors.

Dr. Brisk was a recipient of the Best Paper Award at CASES 2007 and FPL
2009. He has been a Program Committee member for several international
conferences and workshops, including DAC, ASPDAC, DATE, VLSI-SoC,
FPL, and FPT. He has been the General (Co-)Chair of the IEEE SIES 2009,
the IEEE SASP 2010, and IWLS 2011, and the Program (Co-)Chair of the
IEEE SASP 2011, IWLS 2012, ARC 2013, and FPL 2016.

