Force-directed List Scheduling for Digital
Microfluidic Biochips

Kenneth O’Neal, Daniel Grissom, Philip Brisk

Department of Computer Science and Engineering
University of California, Riverside
Riverside, CA 92521

Abstract—We introduce a Force-directed List Scheduling (FDLS)
algorithm for resource-constrained assay compilation targeting
Digital Microfluidic Biochips (DMFBs). This algorithm has been
used in the past for high-level synthesis of digital signal
processing systems, and is now applied to DMFB synthesis. The
results show improvements compared to List Scheduling (LS) and
Path Scheduling (PS), the most efficient heuristics that have been
proposed, to date, for DMFBs. FDLS was also competitive with
longer-running iterative improvement DMFB scheduling
algorithms based on genetic algorithms.

Keywords-Digital Microfluidic Biochip (DMFB), Force-directed
List Scheduling

L. INTRODUCTION

We introduce a Force-Directed List Scheduling (FDLS) algorithm
for Digital Microfluidic Biochips (DMFBs). FDLS produces shorter
schedules than List Scheduling (LS) [11] and Path Scheduling (PS) [3]
in some cases. LS and PS are two efficient polynomial-time
scheduling heuristics proposed for DMFBs.

Compared to benchtop chemistry, DMFBs offer the benefits of
miniaturization and automation: they use smaller chemical quantities
and automate manual processes that have been subject to human error
in the past. This reduces laboratory space, material cost, and the time
to complete assays (biochemical protocols) by a significant margin.

A DMFB manipulates discrete droplets of liquid on a 2D grid
using an actuation process called electrowetting on dielectric (EWoD)
[8]. As shown in Fig. 1, there is a control electrode underneath each
cell in the grid, and a single ground electrode on top of the grid.
Activating the control electrode beneath a cell that stores a droplet
holds the droplet in place; activating a control electrode in an adjacent
cell induces droplet motion. Fig. 2 depicts the droplet operations that a
DMFB can perform: transport, splitting, merging, and mixing, along
with in-place droplet storage (not shown). Thus, a DMFB is a
reconfigurable computing device, as different cells can perform
different operations at different times during assay execution.

Fig. 3 depicts a compilation flow targeting a DMFB. Assays are
specified as directed acyclic graphs (DAGs) [10]. Assay compilation
involves three steps: (1) scheduling, (2) placement of operations on the
DMEFB (in time and in space), and (3) routing droplets between inputs,
outputs, and operation locations [4]. This paper focuses on the
scheduling step; in principle, any placer and/or router could be used in
conjunction with our scheduler to complete the compilation flow.

The time of assay operations (e.g., mixing) is several orders of
magnitude greater than the time to transport droplets. Thus, scheduling
algorithms have a much greater impact on assay execution time than
routing algorithms, as long as a legal route is found. This paper
focuses exclusively on scheduling.

Top

Plate
Ground Electrode

A Hydrophobic
/ﬁ Layer Droplet
L Bottom

Plate

Contrnl Elec:rodes

Figure 1. A DMEFB with a 2D array of electrodes (left) and cross-sectional

view of a DMFB (right).

@
<
a8

Figure 2. Basic microfluidic operations performed on 2D array of electrodes.

Splitting
Merging

Mixing

Transport

== g

Figure 3. DMFB synthesis is composed of three, sequential, steps: operation

scheduling, module placement and droplet routing.

II.  RELATED WORK

We are aware of just a handful of peer-reviewed papers that have
studied the scheduling problem, to date. We are aware of two
heuristics, Modified List Scheduling (MLS) [11] and Path Scheduling
(PS) [3], two genetic algorithms (GA-1, GA-2) [9][11], and two
optimal integer linear programming (ILP) formulations [2][11].

MLS [11] is an efficient polynomial-time greedy heuristic that
runs in O(nlogn) time, where n is the number of vertices in the graph.
MLS augments the standard List Scheduling (LS) algorithm [1] with a
rescheduling step that is invoked to increase the likelihood of
achieving a legal schedule while meeting resource constraints. Force-
Directed List Scheduling (FDLS) is based on LS, not MLS, and
borrows ideas from force-directed scheduling in high-level synthesis
for digital systems [7][13] to prioritize vertices for greedy scheduling.

PS [3] is based on the observation that storing droplets on-chip
reduces the availability of resources for other operations. This is
important for assays with a large fanout in their DAG representation.
PS prioritizes the different paths in a DAG, and, when given a choice,
schedules operations from paths that have already started to execute,
rather than starting to execute a new path. PS was shown to find legal
schedules for graphs that LS was unable to schedule, due to large
assay DAGs and DMFBs with limited resources.



The two GAs randomly generate schedules and converge over
time to locally optimal solutions; GA-2 [9] offers improvements over
GA-1 [11] for assays whose DAGs have multiple connected
components. GA-1 and GA-2 generally produce better quality
solutions than (M)LS and PS, but run significantly slower; FDLS
produces schedules almost as short as those produced by GA-1 and
GA-2 for most benchmarks that we considered. The ILP formulations
[2][11] achieve optimal schedules; however, the algorithms that solve
the ILP have exponential time complexities, unless it is eventually
proven that P=NP.

Luo and Akella [5] analyzed the PCR assay [10] and developed a
polynomial-time algorithm that schedules it optimally; in contrast, the
other algorithms mentioned here are sufficiently general to handle
any assay specified as a DAG.

Several papers perform scheduling in conjunction with other
synthesis steps. Yu et al. [14] combine scheduling and placement into
a 3D placement problem in space and time; they solve the problem
using simulated annealing and a data structure (the T-tree) to
represent the placement. Maftei et al. [6] solve scheduling, module
selection, placement, and routing using Tabu Search. These iterative
improvement algorithms are much like GA-1 and GA-2 in terms of
quality and runtime.

III. SCHEDULING ALGORITHMS

A. Preliminaries and Assumptions

Assay operations may occur anywhere on a DMFB. The
execution time of mixing depends on the size of the mixer (e.g., 2x2,
2x3, 3x3, etc.); larger mixers are generally faster [10]. This
complicates scheduling because: (1) scheduling cannot be decoupled
from module selection; and (2) module selection cannot be decoupled
from placement; if we assume that we start with a legal placement,
increasing the size of a module may cause the placement to become
illegal. We assume uniform module size as a simplifying assumption.
It is not immediately clear how many concurrent assay operations can
be supported in this context. In resource-constrained scheduling in
high-level synthesis for digital systems [1], the number and type of
each resource is provided as an input to the problem: e.g., 10 adders,
5 multipliers, etc.

A secondary complication is that DMFB resources perform both
assay operations and storage; in contrast, high-level synthesis for
digital systems decouples scheduling and storage allocation [1], since
functional units and registers are two completely different resources.

In DMFB synthesis, all that we know about the DMFB is its
length and width. Our scheduler divides the regions of the DMFB
into work modules, which perform all assay and storage operations;
we assume that work modules are packed as tightly as possible onto
the device, while providing sufficient pathways for droplet routes.
The number of work modules, N, is derived deterministically from
the dimensions of the DMFB. Each work module can perform one
assay operation (e.g., mixing, splitting, etc.) or store up to k droplets
at a time while ensuring legal spacing constraints [12] within the
module; we use & values of 2 and 4 in our experiments.

1) Components: Work Modules and 1/0

Many assays require specialized operations, e.g., heating and
detection, which the DMFB alone cannot perform. External devices,
e.g., heaters and detectors, are affixed to the DMFB to perform these
operations. To simplify scheduling, we assume that these devices are
affixed to specialized work modules, which can perform specialized
assay operations that general work modules cannot; we assume that
each work module supports at most one specialized operation.

I/O reservoirs perform specialized input and output operations,
but no other operations (e.g., an input reservoir cannot perform
mixing or splitting. Input reservoirs dispense fluids; we assume that
the fluid connected to each input reservoir remains static during assay
execution. Any fluid can be routed to a waste module for disposal.
Our benchmarks [10] do not produce non-waste output for collection.

We use the generic term component to refer to a work module or
/O reservoir.

2) Operation and Component Types
We associate an integer fype with each assay operation and
component; we use a compatibility function to determine whether a
given component can execute an assay operation.

Let D denote the number of specialized operations (e.g., heating,
detection, etc.) supported by the DMFB; we assume that any assay
will require a subset of these specialized operations; an assay that
requires a specialized operation that is not supported by the DMFB
cannot be scheduled.

Let F denote the number of distinct fluids used by the assay;
multiple droplets of the same fluid are not distinct. The DMFB
provides at least one input reservoir per distinct fluid.

T=1{0,1, .., D+F+1} is the set of types, described next:

General Types: Type 0 refers to general operations (e.g., mixing,
splitting, merging) that any work module can perform.

Specialized Types: Types 1...D refer to specialized operations that
require external devices (e.g., heating, detection); only specialized
work modules can perform them.

Fluid Input Types: Types D+1...D+F refer to dispense operations
(fluid input). Only an input reservoir that contains a fluid of type f
can input that fluid type.

Disposal Types: Type D+F+1 is a generic output type, which any
waste output can perform.

The assay is specified as a DAG G = (V, E), and the set of
components is C = {M, I, O}, where M is the set of work modules
(both general and specialized) and / and O are the respective sets of
input and output reservoirs.

3) Compatible Components and Operations
General work modules only perform Type 0 operations. A
specialized work module of type j, I < j < D, can perform an
operation of Type 0 or j. An input reservoir can only dispense a fluid
of Type j, D+1 <j < D+F; and an output reservoir can only perform
disposal operations of Type D+F+1.

Let /- VUC — T be a function that associates a type with each
assay operation and component. A DAG vertex ve} and a component
ceC are compatible, denoted v<c, if either of the following two
conditions holds:

* fitv) = 0 and 0 < f{c) < D, ie., v performs a general assay
operation, and c is a general or specialized work module; or

* | < f(v) < D+F+I and f{c) = f(v), i.e., v is a specialized assay
operation or I/O operation, and c is a specialized work module or
1/O reservoir that can perform the operation.

Let g: T'— {T} be a one-to-many function that returns the set of
all component types that are compatible with a vertex of a given type.
In other words, g(f{v)) is the set of all component types that are
compatible with vertex veV; for a given DMFB, g can be computed

offline once and stored in a vector.



Let h: V' — T be a function that associates a component type with
each vertex; h(v) denotes the type of the component onto which
vertex veV is scheduled.

4) Scheduling Operations and Droplet Storage
The latency L(u) is provided for each assay operation ueV; our
benchmarks specify assay operations in terms of seconds [10]. The
schedule computes a start time S(u) for u; the duration of the
operation is the interval /S(u), S(u) + L(u)].

Consider edge (u, v)eE; if droplet routing time is negligible [11],
then S(v) > S(u) + L(u); otherwise, the schedule would not satisfy
precedence constraints. If S(v) > S(u) + L(u), then the droplet
produced by operation u must be stored for time interval H(u) = [S(u)
+ L(u), S(v)], and possibly longer if u has other successors whose
start times are later than S(v). Thus, some work module must be
available to store u during H(u); recall that work modules can store
up to k droplets. For vertex ueV, the storage time is:

H(u) = max{Sw)|(u,v) € E} — (S(u) + L(w)). (D)
H(u) = 0, for all sinks, i.e., DAG vertices with no successors.

B. Problem Statement

Resource-constrained scheduling for DMFBs, as described here,
is a constrained optimization problem; the corresponding decision
problem is NP-complete. The problem is characterized as follows:

1) Inputs
The inputs to the resource constrained scheduling problem for
DMFBs are as follows:

* An assay specified as a DAG G = (V, E);

* The latency of each operation: a function L: V' — {1, 2, ...};

* The number of distinct fluids F;

* The set of component and operation types T; and

* A DMFB, characterized by the number of components of each
type: N = N() + N] + ... +ND+F+1'

2) Objective
The objective is to compute a legal schedule that minimizes the
total schedule length, i.e.,
0bj = min{max,, {SW) + L(w)}}. 2)

The final vertex to finish in the schedule is guaranteed to be a sink,
which will require no storage time.

3) Legality
A legal schedule must satisfy the precedence constraint:
V(u,v) EE,S(v) > S(u) + L(u). 3)

Resource constraints are more complicated, and must be satisfied
for each time-step. The schedule does not need to bind operations to
specific resources; it simply needs to ensure that sufficient resources
are available to perform the operations that have been scheduled.

Let ¢ be a time step in the schedule. Let r4?) be the set of
operations of type j scheduled at time step #, and A(?) be the set of
operations stored at time step ¢, i.e.:

ri(t) = {ulueV,f(u) = j,Sw) <t<Sw)+Lw}; and 4)
h@®) = {ulueV,S(w) +Lw) <t < S+ L@ +HW}. 5)

The resource constraints for specialized assay operations and 1/O
operations are straightforward:

[l < Nj,1<j<D+F+1, (6)

i.e.,, the number of non-general operations of each type scheduled at
each time step cannot exceed the number of available modules or I/O
reservoirs of that type.

The resource constraints for general assay operations and storage
are more complicated, as any work chamber can perform them. If we
assume that criteria (6) is satisfied, then let N,(z) denote the number
of available work modules for these operations:

N(8) = Ny + X2, (N, - [10)]). (7)

Recall that each work module can store up to k droplets. Then the
final resource constraint for general operations and storage is

7] + [Th(®)/k] < Ny (®)

C. List Scheduling (LS) Implementation

LS [11] computes a priority function for each vertex in the DAG.
Vertices that can be scheduled immediately (sources) are sorted in
priority order using a priority queue. The main loop of the algorithm
steps through the schedule, one time-step at a time, until all vertices
are scheduled, or it becomes apparent that no feasible schedule is
possible, given the resource constraints. At a given time step, a vertex
is available if all of its predecessors have completed their operations.

LS maintains a vector 4/0...D+F+1], where A/j] is the number
of available resources of type j. Initially, 4/j/ = N;, i.e., the total
number of resources of type j in the DMFB.

At each time step, the available vertices are processed in priority
order. Let ueV be an available vertex. For each compatible
component type jeg(f(u)), at least one component of type j is
available for v if Afj] > 0. If so, then A4/j] is decremented, and the
scheduler sets A(u) = j to remember the type of the resource onto
which v is scheduled; this way, the scheduler can free up a resource
of the appropriate type when v finishes its operation.

General assay operations (e.g., mixing, dilution, etc.) can execute
on either general or specialized work modules. When both types of
work module are available, we give preference to general work
modules, because this increases the likelihood that a specialized assay
operation can be scheduled in an upcoming time-step. If vertex ueV
finishes its operation at the end of the current time step, the scheduler
decrements 4/h(u)] to free up a resource of the appropriate type.

1) Tracking Droplet Storage
A significant amount of bookkeeping is required to track which
modules of each type store droplets. In particular, droplets may move
between work chambers if doing so is advantageous. Examples of
useful droplet movements include:

* Over time, droplets enter and leave chambers for storage. A
situation may exist where modules m; and m;, are initially required
to store n droplets in total, where £ < n < 2k. At some future time
step, the number of droplets stored in m; and m,, denoted by n; and
n, respectively, may be reduced and satisfy n; + n, < k. When this
occurs, without loss of generality, all of the droplets stored in m;
can be transported to m;, freeing up m; for other assay operations.

* Suppose that droplets are stored in a specialized work module of
type j;, that Afj;] = 0, i.e., no other modules of type j; are
available, and that 4/j,/ > 0 for some specialized work module
type j» # j, i.e., at least one module of type j, is available. If a
vertex uelV of type f(u) = j; is available for scheduling, and no
vertex vel of type f(v) = j, is available, then it is beneficial to
move the droplets to an available module of type j,; then u can be
scheduled immediately.



* If a general work chamber is freed because an operation finishes,
then moving droplets from a specialized work chamber to the
general chamber reduces competition for the specialized chamber.

Therefore, the scheduler must track the work module types that
store each droplet in the system at each time-step. It is important to
note that the scheduler does not bind droplets to specific work
modules of a given type; it simply adjusts the available modules of
each type accordingly as the assay progresses, and tracks the storage
information at the end to derive a legal schedule.

A DAG edge ecE represents a droplet. The scheduler maintains
an ordered list S(e) for each edge; each entry of S(e) is a triple (¢, t,,
j), which indicates that e is stored in a module of type j from time-
step ¢; to time-step ¢,. When e is initially stored in a module of type j
at time #;, the initial entry is (#;, -, j), since the scheduler does not yet
know when e will leave the module. When e leaves the module at
time #,, it fills in the entry (¢, t,, j). If e is transported to an assay
operation, the scheduler is done. If e is transported to a different
module of type j’ for storage, the scheduler then allocates a new triple
(t, -, j’) and inserts it at the end of S(e) to maintain the order.

The scheduler must track the number of droplets stored by each
module type, in addition to the total number of modules of each type
that have been allocated. It tracks this information in an array
B[0...D+F+1]. Recall that k is the maximum number of droplets that
a module can store. Suppose that the scheduler stores a droplet in a
work module of type j. If BJj] % k = 0, then incrementing B/j] to
accommodate the new droplet will required a new module of type j,
so the scheduler must increment A/j/. Similarly, if the scheduler
removes a droplet from a module of type j, and Bfj] % k =1, then a
module of type j can be reclaimed, so the scheduler decrements A/j;.

2) Scheduling Fails

If the scheduler is unable to find a work module to store a droplet,
then scheduling fails, as no resources are available. This does not
mean that no legal schedule exists; this simply means that list
scheduling, a polynomial-time heuristic, has failed to find an
affirmative answer to an NP-complete decision problem.

The second cause of failure is subtler. If a large number of
droplets are stored on-chip, it may be impossible to allocate any of
the available assay operations in the priority queue. As the algorithm
progresses through future time-steps, all ongoing assay operations
that are currently scheduled will complete; these assay operations
may produce droplets that require additional storage. If all ongoing
operations complete, and none of the available operations can be
scheduled due to a lack of available resources, then the list scheduler
has failed to find a legal schedule.

D. Force-Directed List Scheduling (FDLS)

FDLS is a well-established resource-constrained scheduling
algorithm in high-level synthesis of digital circuits [7][13]; here, we
describe an adaptation of FDLS that targets DMFBs.

1) Implementation Differences and Discussion

Our implementation of FDLS is simpler than the description
provided by its inventors, Paulin and Knight [7], in two respects.
Firstly, Paulin and Knight dynamically update the priorities for each
vertex at each scheduling step, in response to the constraints imposed
by the vertices that have been scheduled in previous time steps; our
implementation computes priorities statically. Secondly, our force
calculation is simpler than Paulin and Knight’s; we found that the
greedy nature of the underlying list scheduling mechanism performs
best with a truncated version of the force calculation that considers
only the first few time steps at which an operation can be scheduled.

Paulin and Knight introduced Force-Directed Scheduling (not to
be confused with FDLS) as a latency-constrained scheduling
heuristic, and suggested FDLS as a resource-constrained variant.
Under the latency-constrained model, the objective is to minimize the
cost of the resources that are allocated to perform a computation.
FDS makes an explicit decision to schedule vertex v at time-step ¢,
and uses forces to model the constraints that this decision imposes on
other vertices. Our implementation of FDLS for DMFBs uses the
force computation—performed once, up-front, for each vertex—to
guide the priority in which vertices are considered for scheduling
during LS. The force calculation is effective, but based on a latency-
constrained model.

2) Force Calculation
The first step is to determine the set of all time steps at which
each operation can be scheduled. In the resource-constrained context,
it is NP-complete to determine if a legal schedule of length K can be
found, given a pre-allocated set of resources [1]. Latency-constrained
scheduling is therefore used as a proxy.

The As Soon As Possible (ASAP) and As Late As Possible (ALAP)
scheduling algorithms determine the earliest and latest possible time
steps in which each given vertex can be scheduled, assuming an
infinite supply of resources [1]; under the force-directed paradigm,
each operation is assumed to be equally likely to be scheduled at any
of its possible time-steps. The slack of a vertex is the difference
between its ALAP and ASAP scheduling times, i.e.:

Slack(v) = ALAP(v) - ASAP(v). )

The probability of a vertex v being scheduled at time-step ¢, such that
ASAP(v) <t < ALAP(v), is:
1

Plv,t) = (Slack(@) + 1)

(10)
If v cannot be scheduled at time t, then P(v, ¢) = 0. Next, we compute
a probability distribution, Q(), for the time steps in the schedule:

Q) = Xpey P(v, 1) an

In other words, Q(v) is the sum of the probabilities of all vertices that
can be scheduled at time-step ¢. The Q(z) values for all time steps ¢
forms a histogram called a distribution graph.

Fig. 4 shows an example assay; we assume that all operations
have a latency of 2, and the output operation has a latency of 0; the
longest path in the graph has length 8. We compute ASAP and ALAP
schedules using a latency constraint of 10. Table 1 shows the ASAP
and ALAP values for each vertex, along with the probabilities; it is
important to note that Table I shows the time step at which each
vertex starts, so the final output vertex finishes 2 time steps affer the
time step at which it is scheduled. Fig. 5 shows the distribution graph.

Figure 4. Example assay, specified as a DAG.



TABLE L. ASAP, ALAP AND PROBABILITY DISTRIBUTION VALUES FOR

EACH VERTEX IN FIG 4.
Node ASAP ALAP Time Steps Probability
Input-1 0 0+2 0,1,2 1/(2+1)=0.333
Input-2 0 0+2 0,1,2 1/(2+1)=0.333
Input-3 0 0+2 0,1,2 1/(2+1)=0.333
Input-4 0 0+2 0,1,2 1/(2+1)=0.333
Input-5 0 242 0,1,23,4 1/(4+1)=0.2
Input-6 0 242 0,1,2,3,4 1/(4+1)=0.2
Mix-1 2 242 23,4 1/(2+1)=0.333
Mix-2 2 242 23,4 1/(2+1)=0.333
Mix-3 2 4+2 2,3,4,5,6 1/(2+4)=0.2
Mix-4 4 4+2 4,5,6 1/(2+1)=0.333
Mix-5 6 642 6,7,8 1/(2+1)=0.333
Output 8 8+2 8,9,10 1/(2+1)=0.333
Q(v)

25

15
1
0 AN

TS0 TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10

[

Figure 5. Distribution graph for each vertex in Fig. 4, derived from Table I.

Paulin and Knight’s FDS implementation uses the distribution
graph to compute probabilistic forces for each vertex, at each time
step at which it can be legally scheduled [7]. The time complexity of
computing all the forces for vertex v is cubic in Slack(v), which
contributed significant overhead to the runtime of the algorithm. We
also observed that the schedule quality produced using their cost
function was inferior to list scheduling. We believe that their cost is
more appropriate for dynamic implementations of list scheduling that
update the costs of all available vertices each time that a vertex is
scheduled; in contrast, our implementation assigns a static priority to
all of the vertices, which never changes.

We experimented with approximately 50 cost functions for
assigning static priorities to vertices, and we found two that
performed approximately well across all benchmarks. We refer to
them as FauxForce;() and FauxForce,(), because they are reduced
versions of Paulin and Knight’s force equation [7]:

1
FauxForce,(v) = ALAP(v) 2
max;_ s ap)P Q)
FauxF. ) = >
auxrorce,(v) =
2 T ASAP+T

t=asap(w) P (WD)

The vertices are sorted in increasing order of FauxForce in order
to prioritize them. Intuitively, FauxForce;() assigns the highest
priority to vertices that have high slack values and at least one time
step in a latency-constrained schedule with very little competition
from other vertices. FDS would thus assign such a vertex to this time-
step.

FauxForce,() is based on the observation that the list scheduling
framework tends to assign vertices to earlier time steps within their
slack window because of its greedy nature; consequently therefore,
FauxForce;() could assign a high priority to a vertex whose most
favorable time step in the latency-constrained context is fairly late in
its slack window. To prevent this from occurring, FauxForce,() only
considers the first two time-steps in the slack window of each vertex.

IV. EXPERIMENTAL RESULTS

We compare the runtime and solution quality of FDLS with three
other DMFB scheduling algorithms: List Scheduling (LS), as
described in Section III.C, Path Scheduling (PS) [3], and two genetic
scheduling algorithms (GA-1 [11] and GA-2 [9]). FDLS, and FDLS,
respectively refer to FDLS using cost functions FauxForce;() and
FauxForce,(), as shown in Egs. (11) and (12).

LS uses a priority function similar to modified list scheduling
(MLS) [11]; however, it does not include MLS’ rescheduling step, as
our goal is to compare the quality of cost functions within the
standard LS framework. The PS implementation is identical to ref.
[3]. As both LS and PS are polynomial-time heuristics, we are most
interested to see whether FDLS can improve their results within a
reasonable runtime overhead.

GA-1 and 2 are iterative improvement algorithms that find locally
optimal solutions, but have significantly longer runtimes than LS, PS,
or FDLS. Both GA implementations start with an initial population
size of 20 schedules, and run for 100 generations, evaluating
approximately 2000 randomly generated schedules (some of which
may be redundant with respect to one another).

We considered three publicly available assays: PCR, In-vitro, and
Protein [10]. PCR is very small and all algorithms easily scheduled it
optimally; we omit PCR from our results. We targeted a DMFB with
four work modules; all modules were specialized with appropriate
detectors for the two assays [10]. Input generation and dispensing
times were 2s for the In-vitro assays [11] and 7s for the Protein assay
[10]. We ran two separate sets of experiments, where each chamber
can store up to k = 2 and k = 4 droplets.

Tables II and III report the schedule length (TS, Is time-steps)
and runtime (ms) of each scheduling algorithm on each benchmark.
All computations were performed on an Intel Core2 Duo T5550
machine running at 1.83GHz with 3GB of RAM.

A. Schedule Length

In-vitro: All scheduling algorithms achieved the same schedule
lengths for £ = 2 and k = 4. FDLS; and FDLS, produced schedules
no longer than LS and PS for all In-vitro assays, and shorter than one
or the other for the four largest. PS generated longer schedules than
LS in two cases, a shorter schedule in one case, and equal-length
schedules in two cases.

TABLE II. SCHEDULE LENGTHS (TS) OBTAINED BY DIFFERENT

SCHEDULING ALGORITHMS FOR THE DMFB.

In-Vitro
Identical results for k=2 and k=4,
(4s_4r) (3s_4r) (3s_3r) (2s_3r) (2s_2r) k=4 k=2

Protein

LS 45 31 25 21 15 198 226
PS 45 33 27 19 15 187 187
FDLS; 41 31 25 18 15 182 209
FDLS, 41 31 25 18 15 182 209
GA-1 39 29 23 18 15 179 200
GA-2 39 29 23 19 15 194 199




TABLE III. RUNTIMES (MS) OF THE DMFB SCHEDULING ALGORITHMS
FOR THE CASE WHERE EACH WORK MODULE CAN STORE UP TO K=4 DROPLETS.
In-Vitro Protein
(4s_4r) (3s_4r) (3s_3r) (2s_3r) (2s_2r)
LS 10 4 2 1 <1 8
PS 3 2 1 1 <1 3
FDLS, 37 15 9 4 2 198
FDLS, 29 14 8 4 1 154
GA-1 15,297 9,846 5,450 3,226 1,534 12,573
GA-2 15,964 10,121 5,655 2,974 1,687 10,124

In general, GA-1 and GA-2 produced the shortest schedules, with
the exception of (2s_3r), where GA-2 produced schedule of length 19
TS, while FDLS,, FDLS,, and GA-1 produced schedules of length 18
TS. The difference in schedule length between GA-1, GA-2, FDLS,,
and FDLS, was at most 2 TS for all In-vitro assays. Given that GA-1
and GA-2 are long-running iterative improvement algorithms, it is
expected that they would produce the shortest schedules in this study.

Protein: Varying the number of droplets, &, that each work chamber
can store affected the length of the schedules significantly, except for
PS which achieved schedules of 187 time-steps for £ = 2 and k& =4.
LS, FDLS, and FDLS, produced shorter schedules than PS for k£ = 4,
and longer schedules when & =2. These results echo ref. [3], which
showed that PS is more robust to variations in storage availability
than LS and FDLS.

FDLS; and FDLS, produced significantly shorter schedules than LS
for both k£ = 2 and k =4; taken in conjunction with the results for In-
vitro, FDLS appears to be an unequivocal improvement over LS.

GA-1 produced the shortest overall schedule for the case k£ =4, while
PS produced the shortest overall schedule for the case £ =2; GA-2
produced a notably poor quality schedule for k = 4. It is important to
note that GA-1 and GA-2 repeatedly run LS, varying the vertex
priorities randomly. Thus, for the resource-constrained case (k = 2),
the results effectively show that one run of PS is more effective than
multiple runs of LS (which generalizes to FDLS, GA-1, and GA-2).
When more resources are available (k = 4), approaches based on LS
can produce more effective schedules than PS.

B. Schedule Length

Table III reports the runtime of the heuristics for the case k = 4;
similar results were obtained for k£ = 2, but are omitted to conserve
space. Among the heuristics, PS had the fastest runtime, followed by
LS, then FDLS, and then FDLS;; the speed of PS aligns with the
results reported in ref. [3]. The genetic algorithms ran considerably
slower than the heuristics, which is to be expected. FDLS, and
FDLS; run slower than LS, because they both involve a pre-
processing stage to compute the forces used for priority. FDLS, runs
faster than FDLS, because its FauxForce, calculation in Eq. (13) is a
truncated version of FDLS,’s FauxForce; calculation in Eq. (12).

C. Summary

FDLS, and FDLS,; consistently produced schedules of better or
comparable quality to LS and PS, while often approaching the quality
of GA-1 and GA-2. Between FDLS; and FDLS,, we consider FDLS,
to be superior, since it produced equal-length schedules as FDLS; in
all cases, while running faster because it performs a truncated version
of FDLS,’s faux-force calculation.

V. CONCLUSION

We have improved the quality of list scheduling for DMFBs by
developing cost functions inspired by FDS in high-level synthesis of
digital systems. The most effective cost function that we found
performed quite well for the In-vitro assays that we considered, but
left room for improvement with Protein, especially when storage
space was restricted (i.e., the case k = 2 in Table III). We suspect that
a dynamic scheduling approach that re-computes priorities after each
operation is scheduled could potentially yield better results, albeit
with a larger runtime overhead. Such an approach would be closer to
the original FDLS algorithm proposed by Paulin and Knight [7].

ACKNOWLEDGMENT

This work was supported in part by NSF Grant CNS-1035603. Daniel
Grissom was supported by an NSF Graduate Research Fellowship.

REFERENCES

[1] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-
Hill Higher Education, 1994.

[2] J. Ding, K. Chakrabarty, and R. B. Fair, “Scheduling of microfluidic
operations for reconfigurable two-dimensional electrowetting arrays,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 20, no. 12,
pp. 1463-1468, Dec. 2001.

[3] D. Grissom and P. Brisk, "Path scheduling on digital microfluidic
biochips," in Proc. Design Automation Conference (DAC), San
Francisco, CA, 2012, pp. 26-35.

[4] T. Ho, K. Chakrabarty and P. Pop, "Digital microfluidic biochips: recent
research and emerging challenges," in Proc. Int. Conf. HW/SW Codesign
and Sys. Synth. (CODES+ISSS), Taipei, Taiwan, 2011, pp. 335-343.

[S] L. Luo and S. Akella, "Optimal scheduling of biochemical analyses on
digital microfluidic systems," in Proc. Conf. on Intelligent Robots and
Systems, San Diego, CA, 2007, pp. 3151-3157.

[6] E. Maftei, P. Pop, and J. Madsen, “Tabu search-based synthesis of
dynamically reconfigurable digital microfluidic biochips,” in Proc. Int.
Conf. Compilers, Architecture, and Synthesis for Embedded Sys.
(CASES), Grenoble, France, 2009, pp. 195-204.

[71 P. G. Paulin and J. P. Knight, “Force-directed scheduling for the
behavioral synthesis of ASICs,” [EEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 8, no. 6, pp. 661-679, June, 1989.

[8] M. G. Pollack, A.D. Shenderov and R. B. Fair, "Electrowetting-based
actuation of droplets for integrated microfluidics," Lab Chip, vol. 2, no.
2, pp. 96-101, Mar. 2002.

[91 A. J. Ricketts, K. Irick, N. Vijaykrishnan and M. J. Irwin, "Priority
scheduling in digital microfluidics-based biochips," in Proc. Conf. on
Design Automation and Test in Europe (DATE), Munich, Germany,
2006, pp. 329-334.

[10] F. Su and K. Chakrabarty, “Benchmarks for digital microfluidic biochip
design and synthesis,” Duke Univ. Dept. of Electrical and Computer
Engineering, 2006. http://www.ee.duke.edu/~fs/Benchmark.pdf

[11] F. Su and K. Chakrabarty. "High-level synthesis of digital microfluidic
biochips," ACM J. Emerging Tech. Comput. Syst., vol. 3, no. 4, pp. 16.1-
16.32, Jan. 2008.

[12] F. Su, W. Hwang and K. Chakrabarty, "Droplet routing in the synthesis
of digital microfluidic biochips," in Proc. Conf. on Design Automation
and Test in Europe (DATE), Munich, Germany, 2006, pp. 323-328.

[13] W.E.J. Verhaegh, P. E. R. Lippens, E. H. L. Aarts, J. HM. Korst, J. L.
van Meerbergen, and A. van der Werf, “Improved force-directed
scheduling in high-throughput digital signal processing,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 14, no. 8, pp. 945-960,
Aug. 1995.

[14] P-H. Yuh, C-L. Yang, and Y-W. Chang, “Placement of defect-tolerant
digital microfluidic biochips using the T-tree formulation,” ACM J.
Emerging Tech. Comput. Syst., vol. 3, no. 3, article #13, 2007.



