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Abstract—We introduce a Force-directed List Scheduling (FDLS) 
algorithm for resource-constrained assay compilation targeting 
Digital Microfluidic Biochips (DMFBs). This algorithm has been 
used in the past for high-level synthesis of digital signal 
processing systems, and is now applied to DMFB synthesis. The 
results show improvements compared to List Scheduling (LS) and 
Path Scheduling (PS), the most efficient heuristics that have been 
proposed, to date, for DMFBs. FDLS was also competitive with 
longer-running iterative improvement DMFB scheduling 
algorithms based on genetic algorithms. 

Keywords-Digital Microfluidic Biochip (DMFB), Force-directed 
List Scheduling 

I.  INTRODUCTION 
We introduce a Force-Directed List Scheduling (FDLS) algorithm 

for Digital Microfluidic Biochips (DMFBs). FDLS produces shorter 
schedules than List Scheduling (LS) [11] and Path Scheduling (PS) [3] 
in some cases. LS and PS are two efficient polynomial-time 
scheduling heuristics proposed for DMFBs.  

Compared to benchtop chemistry, DMFBs offer the benefits of 
miniaturization and automation: they use smaller chemical quantities 
and automate manual processes that have been subject to human error 
in the past. This reduces laboratory space, material cost, and the time 
to complete assays (biochemical protocols) by a significant margin.  

A DMFB manipulates discrete droplets of liquid on a 2D grid 
using an actuation process called electrowetting on dielectric (EWoD) 
[8]. As shown in Fig. 1, there is a control electrode underneath each 
cell in the grid, and a single ground electrode on top of the grid. 
Activating the control electrode beneath a cell that stores a droplet 
holds the droplet in place; activating a control electrode in an adjacent 
cell induces droplet motion. Fig. 2 depicts the droplet operations that a 
DMFB can perform: transport, splitting, merging, and mixing, along 
with in-place droplet storage (not shown). Thus, a DMFB is a 
reconfigurable computing device, as different cells can perform 
different operations at different times during assay execution. 

Fig. 3 depicts a compilation flow targeting a DMFB. Assays are 
specified as directed acyclic graphs (DAGs) [10]. Assay compilation 
involves three steps: (1) scheduling, (2) placement of operations on the 
DMFB (in time and in space), and (3) routing droplets between inputs, 
outputs, and operation locations [4]. This paper focuses on the 
scheduling step; in principle, any placer and/or router could be used in 
conjunction with our scheduler to complete the compilation flow.  

The time of assay operations (e.g., mixing) is several orders of 
magnitude greater than the time to transport droplets. Thus, scheduling 
algorithms have a much greater impact on assay execution time than 
routing algorithms, as long as a legal route is found. This paper 
focuses exclusively on scheduling.  

 
Figure 1.  A DMFB with a 2D array of electrodes (left) and cross-sectional 

view of a DMFB (right).  

                 

Figure 2.  Basic microfluidic operations performed on 2D array of electrodes. 

 

Figure 3.  DMFB synthesis is composed of three, sequential, steps: operation 
scheduling, module placement and droplet routing. 

II. RELATED WORK 
We are aware of just a handful of peer-reviewed papers that have 

studied the scheduling problem, to date. We are aware of two 
heuristics, Modified List Scheduling (MLS) [11] and Path Scheduling 
(PS) [3], two genetic algorithms (GA-1, GA-2) [9][11], and two 
optimal integer linear programming (ILP) formulations [2][11].  

MLS [11] is an efficient polynomial-time greedy heuristic that 
runs in O(nlogn) time, where n is the number of vertices in the graph. 
MLS augments the standard List Scheduling (LS) algorithm [1] with a 
rescheduling step that is invoked to increase the likelihood of 
achieving a legal schedule while meeting resource constraints. Force-
Directed List Scheduling (FDLS) is based on LS, not MLS, and 
borrows ideas from force-directed scheduling in high-level synthesis 
for digital systems [7][13] to prioritize vertices for greedy scheduling.  

PS [3] is based on the observation that storing droplets on-chip 
reduces the availability of resources for other operations. This is 
important for assays with a large fanout in their DAG representation. 
PS prioritizes the different paths in a DAG, and, when given a choice, 
schedules operations from paths that have already started to execute, 
rather than starting to execute a new path. PS was shown to find legal 
schedules for graphs that LS was unable to schedule, due to large 
assay DAGs and DMFBs with limited resources. 



The two GAs randomly generate schedules and converge over 
time to locally optimal solutions; GA-2 [9] offers improvements over 
GA-1 [11] for assays whose DAGs have multiple connected 
components. GA-1 and GA-2 generally produce better quality 
solutions than (M)LS and PS, but run significantly slower; FDLS 
produces schedules almost as short as those produced by GA-1 and 
GA-2 for most benchmarks that we considered. The ILP formulations 
[2][11] achieve optimal schedules; however, the algorithms that solve 
the ILP have exponential time complexities, unless it is eventually 
proven that P=NP.  

Luo and Akella [5] analyzed the PCR assay [10] and developed a 
polynomial-time algorithm that schedules it optimally; in contrast, the 
other algorithms mentioned here are sufficiently general to handle 
any assay specified as a DAG. 

Several papers perform scheduling in conjunction with other 
synthesis steps. Yu et al. [14] combine scheduling and placement into 
a 3D placement problem in space and time; they solve the problem 
using simulated annealing and a data structure (the T-tree) to 
represent the placement. Maftei et al. [6] solve scheduling, module 
selection, placement, and routing using Tabu Search. These iterative 
improvement algorithms are much like GA-1 and GA-2 in terms of 
quality and runtime. 

III. SCHEDULING ALGORITHMS 

A. Preliminaries and Assumptions 
Assay operations may occur anywhere on a DMFB. The 

execution time of mixing depends on the size of the mixer (e.g., 2x2, 
2x3, 3x3, etc.); larger mixers are generally faster [10]. This 
complicates scheduling because: (1) scheduling cannot be decoupled 
from module selection; and (2) module selection cannot be decoupled 
from placement; if we assume that we start with a legal placement, 
increasing the size of a module may cause the placement to become 
illegal. We assume uniform module size as a simplifying assumption. 
It is not immediately clear how many concurrent assay operations can 
be supported in this context. In resource-constrained scheduling in 
high-level synthesis for digital systems [1], the number and type of 
each resource is provided as an input to the problem: e.g., 10 adders, 
5 multipliers, etc.  

A secondary complication is that DMFB resources perform both 
assay operations and storage; in contrast, high-level synthesis for 
digital systems decouples scheduling and storage allocation [1], since 
functional units and registers are two completely different resources.  

In DMFB synthesis, all that we know about the DMFB is its 
length and width. Our scheduler divides the regions of the DMFB 
into work modules, which perform all assay and storage operations; 
we assume that work modules are packed as tightly as possible onto 
the device, while providing sufficient pathways for droplet routes. 
The number of work modules, N, is derived deterministically from 
the dimensions of the DMFB. Each work module can perform one 
assay operation (e.g., mixing, splitting, etc.) or store up to k droplets 
at a time while ensuring legal spacing constraints [12] within the 
module; we use k values of 2 and 4 in our experiments. 

1) Components: Work Modules and I/O 
Many assays require specialized operations, e.g., heating and 

detection, which the DMFB alone cannot perform. External devices, 
e.g., heaters and detectors, are affixed to the DMFB to perform these 
operations. To simplify scheduling, we assume that these devices are 
affixed to specialized work modules, which can perform specialized 
assay operations that general work modules cannot; we assume that 
each work module supports at most one specialized operation. 

I/O reservoirs perform specialized input and output operations, 
but no other operations (e.g., an input reservoir cannot perform 
mixing or splitting. Input reservoirs dispense fluids; we assume that 
the fluid connected to each input reservoir remains static during assay 
execution. Any fluid can be routed to a waste module for disposal. 
Our benchmarks [10] do not produce non-waste output for collection.  

We use the generic term component to refer to a work module or 
I/O reservoir. 

2) Operation and Component Types 
We associate an integer type with each assay operation and 

component; we use a compatibility function to determine whether a 
given component can execute an assay operation.  

Let D denote the number of specialized operations (e.g., heating, 
detection, etc.) supported by the DMFB; we assume that any assay 
will require a subset of these specialized operations; an assay that 
requires a specialized operation that is not supported by the DMFB 
cannot be scheduled. 

Let F denote the number of distinct fluids used by the assay; 
multiple droplets of the same fluid are not distinct. The DMFB 
provides at least one input reservoir per distinct fluid.  

T = {0, 1, …, D+F+1} is the set of types, described next: 

General Types: Type 0 refers to general operations (e.g., mixing, 
splitting, merging) that any work module can perform. 

Specialized Types: Types 1…D refer to specialized operations that 
require external devices (e.g., heating, detection); only specialized 
work modules can perform them. 

Fluid Input Types: Types D+1…D+F refer to dispense operations 
(fluid input). Only an input reservoir that contains a fluid of type f 
can input that fluid type. 

Disposal Types: Type D+F+1 is a generic output type, which any 
waste output can perform.  

The assay is specified as a DAG G = (V, E), and the set of 
components is C = {M, I, O}, where M is the set of work modules 
(both general and specialized) and I and O are the respective sets of 
input and output reservoirs. 

3) Compatible Components and Operations 
General work modules only perform Type 0 operations. A 

specialized work module of type j, 1 < j < D, can perform an 
operation of Type 0 or j. An input reservoir can only dispense a fluid 
of Type j, D+1 < j < D+F; and an output reservoir can only perform 
disposal operations of Type D+F+1. 

Let f: V ! C → T be a function that associates a type with each 
assay operation and component. A DAG vertex v∈V and a component 
c∈C are compatible, denoted v≼c, if either of the following two 
conditions holds: 

• f(v) = 0 and 0 < f(c) < D, i.e., v performs a general assay 
operation, and c is a general or specialized work module; or 

• 1 < f(v) < D+F+1 and f(c) = f(v), i.e., v is a specialized assay 
operation or I/O operation, and c is a specialized work module or 
I/O reservoir that can perform the operation. 

Let g: T → {T} be a one-to-many function that returns the set of 
all component types that are compatible with a vertex of a given type. 
In other words, g(f(v)) is the set of all component types that are 
compatible with vertex v∈V; for a given DMFB, g can be computed 
offline once and stored in a vector.  



Let h: V → T be a function that associates a component type with 
each vertex; h(v) denotes the type of the component onto which 
vertex v∈V is scheduled.  

4) Scheduling Operations and Droplet Storage 
The latency L(u) is provided for each assay operation u∈V; our 

benchmarks specify assay operations in terms of seconds [10]. The 
schedule computes a start time S(u) for u; the duration of the 
operation is the interval [S(u), S(u) + L(u)].  

Consider edge (u, v)∈E; if droplet routing time is negligible [11], 
then S(v) > S(u) + L(u); otherwise, the schedule would not satisfy 
precedence constraints. If S(v) > S(u) + L(u), then the droplet 
produced by operation u must be stored for time interval H(u) = [S(u) 
+ L(u), S(v)], and possibly longer if u has other successors whose 
start times are later than S(v). Thus, some work module must be 
available to store u during H(u); recall that work modules can store 
up to k droplets. For vertex u∈V, the storage time is: 

𝐻(𝑢)   =   𝑚𝑎𝑥{𝑆(𝑣)|(𝑢, 𝑣) ∈ 𝐸}   −   (𝑆(𝑢)   +   𝐿(𝑢)). (1) 

H(u) = 0, for all sinks, i.e., DAG vertices with no successors. 

B. Problem Statement 
Resource-constrained scheduling for DMFBs, as described here, 

is a constrained optimization problem; the corresponding decision 
problem is NP-complete. The problem is characterized as follows: 

1) Inputs 
The inputs to the resource constrained scheduling problem for 

DMFBs are as follows: 

• An assay specified as a DAG G = (V, E); 
• The latency of each operation: a function L: V → {1, 2, …}; 
• The number of distinct fluids F;  
• The set of component and operation types T; and 
• A DMFB, characterized by the number of components of each 

type: N = N0 + N1 + … +ND+F+1. 

2) Objective 
The objective is to compute a legal schedule that minimizes the 

total schedule length, i.e.,  

 𝑂𝑏𝑗 = 𝑚𝑖𝑛 𝑚𝑎𝑥!∈! 𝑆 𝑢 + 𝐿(𝑢) . (2) 

The final vertex to finish in the schedule is guaranteed to be a sink, 
which will require no storage time. 

3) Legality 
A legal schedule must satisfy the precedence constraint: 

 ∀(𝑢, 𝑣) ∈ 𝐸, 𝑆(𝑣)   >   𝑆(𝑢)   +   𝐿(𝑢). (3) 
Resource constraints are more complicated, and must be satisfied 

for each time-step. The schedule does not need to bind operations to 
specific resources; it simply needs to ensure that sufficient resources 
are available to perform the operations that have been scheduled. 

Let t be a time step in the schedule. Let rj(t) be the set of 
operations of type j scheduled at time step t, and h(t) be the set of 
operations stored at time step t, i.e.: 

𝑟!(𝑡)   =    {𝑢|𝑢 ∈ 𝑉, 𝑓 𝑢 =   𝑗, 𝑆 𝑢 < 𝑡 < 𝑆 𝑢 + 𝐿 𝑢 }; and   (4) 

      ℎ 𝑡 =    𝑢 𝑢 ∈ 𝑉, 𝑆 𝑢 + 𝐿 𝑢 < 𝑡 < 𝑆 𝑢 + 𝐿 𝑢 + 𝐻 𝑢 . (5) 

The resource constraints for specialized assay operations and I/O 
operations are straightforward: 

      |𝑟!(𝑡)|   <   𝑁! , 1 < 𝑗 < 𝐷 + 𝐹 + 1, (6) 

i.e.,, the number of non-general operations of each type scheduled at 
each time step cannot exceed the number of available modules or I/O 
reservoirs of that type.  

The resource constraints for general assay operations and storage 
are more complicated, as any work chamber can perform them. If we 
assume that criteria (6) is satisfied, then let Nm(t) denote the number 
of available work modules for these operations: 

        𝑁! 𝑡 =   𝑁!   +      𝑁!   –    𝑟! 𝑡!
!!! .   (7) 

Recall that each work module can store up to k droplets. Then the 
final resource constraint for general operations and storage is  

        𝑟!(𝑡) + ℎ(𝑡) /𝑘 ≤ 𝑁!.   (8) 

C. List Scheduling (LS) Implementation 
LS [11] computes a priority function for each vertex in the DAG. 

Vertices that can be scheduled immediately (sources) are sorted in 
priority order using a priority queue. The main loop of the algorithm 
steps through the schedule, one time-step at a time, until all vertices 
are scheduled, or it becomes apparent that no feasible schedule is 
possible, given the resource constraints. At a given time step, a vertex 
is available if all of its predecessors have completed their operations. 

LS maintains a vector A[0…D+F+1], where A[j] is the number 
of available resources of type j. Initially, A[j] = Nj, i.e., the total 
number of resources of type j in the DMFB. 

At each time step, the available vertices are processed in priority 
order. Let u∈V be an available vertex. For each compatible 
component type j∈g(f(u)), at least one component of type j is 
available for v if A[j] > 0. If so, then A[j] is decremented, and the 
scheduler sets h(u) = j to remember the type of the resource onto 
which v is scheduled; this way, the scheduler can free up a resource 
of the appropriate type when v finishes its operation.  

General assay operations (e.g., mixing, dilution, etc.) can execute 
on either general or specialized work modules. When both types of 
work module are available, we give preference to general work 
modules, because this increases the likelihood that a specialized assay 
operation can be scheduled in an upcoming time-step. If vertex u∈V 
finishes its operation at the end of the current time step, the scheduler 
decrements A[h(u)] to free up a resource of the appropriate type.  

1) Tracking Droplet Storage 
A significant amount of bookkeeping is required to track which 

modules of each type store droplets. In particular, droplets may move 
between work chambers if doing so is advantageous. Examples of 
useful droplet movements include: 

• Over time, droplets enter and leave chambers for storage. A 
situation may exist where modules m1 and m2 are initially required 
to store n droplets in total, where k < n < 2k. At some future time 
step, the number of droplets stored in m1 and m2, denoted by n1 and 
n2 respectively, may be reduced and satisfy n1 + n2 < k. When this 
occurs, without loss of generality, all of the droplets stored in m1 
can be transported to m2, freeing up m1 for other assay operations. 

• Suppose that droplets are stored in a specialized work module of 
type j1, that A[j1] = 0, i.e., no other modules of type j1 are 
available, and that A[j2] > 0 for some specialized work module 
type j2 ≠ j1, i.e., at least one module of type j2 is available. If a 
vertex u∈V of type f(u) = j1 is available for scheduling, and no 
vertex v∈V of type f(v) = j2 is available, then it is beneficial to 
move the droplets to an available module of type j2; then u can be 
scheduled immediately.  



• If a general work chamber is freed because an operation finishes, 
then moving droplets from a specialized work chamber to the 
general chamber reduces competition for the specialized chamber. 

Therefore, the scheduler must track the work module types that 
store each droplet in the system at each time-step. It is important to 
note that the scheduler does not bind droplets to specific work 
modules of a given type; it simply adjusts the available modules of 
each type accordingly as the assay progresses, and tracks the storage 
information at the end to derive a legal schedule.  

A DAG edge e∈E represents a droplet. The scheduler maintains 
an ordered list S(e) for each edge; each entry of S(e) is a triple (t1, t2, 
j), which indicates that e is stored in a module of type j from time-
step t1 to time-step t2. When e is initially stored in a module of type j 
at time t1, the initial entry is (t1, -, j), since the scheduler does not yet 
know when e will leave the module. When e leaves the module at 
time t2, it fills in the entry (t1, t2, j). If e is transported to an assay 
operation, the scheduler is done. If e is transported to a different 
module of type j’ for storage, the scheduler then allocates a new triple 
(t2, -, j’) and inserts it at the end of S(e) to maintain the order.  

The scheduler must track the number of droplets stored by each 
module type, in addition to the total number of modules of each type 
that have been allocated. It tracks this information in an array 
B[0…D+F+1]. Recall that k is the maximum number of droplets that 
a module can store. Suppose that the scheduler stores a droplet in a 
work module of type j. If B[j] % k = 0, then incrementing B[j] to 
accommodate the new droplet will required a new module of type j, 
so the scheduler must increment A[j]. Similarly, if the scheduler 
removes a droplet from a module of type j, and B[j] % k = 1,  then a 
module of type j can be reclaimed, so the scheduler decrements A[j].  

2) Scheduling Fails 
If the scheduler is unable to find a work module to store a droplet, 

then scheduling fails, as no resources are available. This does not 
mean that no legal schedule exists; this simply means that list 
scheduling, a polynomial-time heuristic, has failed to find an 
affirmative answer to an NP-complete decision problem. 

The second cause of failure is subtler. If a large number of 
droplets are stored on-chip, it may be impossible to allocate any of 
the available assay operations in the priority queue. As the algorithm 
progresses through future time-steps, all ongoing assay operations 
that are currently scheduled will complete; these assay operations 
may produce droplets that require additional storage. If all ongoing 
operations complete, and none of the available operations can be 
scheduled due to a lack of available resources, then the list scheduler 
has failed to find a legal schedule.  

D. Force-Directed List Scheduling (FDLS) 
FDLS is a well-established resource-constrained scheduling 

algorithm in high-level synthesis of digital circuits [7][13]; here, we 
describe an adaptation of FDLS that targets DMFBs. 

1) Implementation Differences and Discussion 
Our implementation of FDLS is simpler than the description 

provided by its inventors, Paulin and Knight [7], in two respects. 
Firstly, Paulin and Knight dynamically update the priorities for each 
vertex at each scheduling step, in response to the constraints imposed 
by the vertices that have been scheduled in previous time steps; our 
implementation computes priorities statically. Secondly, our force 
calculation is simpler than Paulin and Knight’s; we found that the 
greedy nature of the underlying list scheduling mechanism performs 
best with a truncated version of the force calculation that considers 
only the first few time steps at which an operation can be scheduled. 

Paulin and Knight introduced Force-Directed Scheduling (not to 
be confused with FDLS) as a latency-constrained scheduling 
heuristic, and suggested FDLS as a resource-constrained variant. 
Under the latency-constrained model, the objective is to minimize the 
cost of the resources that are allocated to perform a computation. 
FDS makes an explicit decision to schedule vertex v at time-step t, 
and uses forces to model the constraints that this decision imposes on 
other vertices. Our implementation of FDLS for DMFBs uses the 
force computation—performed once, up-front, for each vertex—to 
guide the priority in which vertices are considered for scheduling 
during LS. The force calculation is effective, but based on a latency-
constrained model. 

2) Force Calculation 
The first step is to determine the set of all time steps at which 

each operation can be scheduled. In the resource-constrained context, 
it is NP-complete to determine if a legal schedule of length K can be 
found, given a pre-allocated set of resources [1]. Latency-constrained 
scheduling is therefore used as a proxy. 

The As Soon As Possible (ASAP) and As Late As Possible (ALAP) 
scheduling algorithms determine the earliest and latest possible time 
steps in which each given vertex can be scheduled, assuming an 
infinite supply of resources [1]; under the force-directed paradigm, 
each operation is assumed to be equally likely to be scheduled at any 
of its possible time-steps. The slack of a vertex is the difference 
between its ALAP and ASAP scheduling times, i.e.:  

𝑆𝑙𝑎𝑐𝑘(𝑣)   =   𝐴𝐿𝐴𝑃(𝑣)  –   𝐴𝑆𝐴𝑃(𝑣). (9) 

The probability of a vertex v being scheduled at time-step t, such that 
ASAP(v) < t < ALAP(v), is: 

𝑃 𝑣, 𝑡 =     
!

(!"#$%(!)  !  !)
. (10) 

If v cannot be scheduled at time t, then P(v, t) = 0. Next, we compute 
a probability distribution, Q(t), for the time steps in the schedule: 

𝑄 𝑡 = 𝑃(𝑣, 𝑡)!∈! . (11) 

In other words, Q(v) is the sum of the probabilities of all vertices that 
can be scheduled at time-step t. The Q(t) values for all time steps t 
forms a histogram called a distribution graph.  

Fig. 4 shows an example assay; we assume that all operations 
have a latency of 2, and the output operation has a latency of 0; the 
longest path in the graph has length 8. We compute ASAP and ALAP 
schedules using a latency constraint of 10. Table 1 shows the ASAP 
and ALAP values for each vertex, along with the probabilities; it is 
important to note that Table I shows the time step at which each 
vertex starts, so the final output vertex finishes 2 time steps after the 
time step at which it is scheduled. Fig. 5 shows the distribution graph. 

   

 
Figure 4.  Example assay, specified as a DAG. 
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TABLE I.  ASAP, ALAP AND PROBABILITY DISTRIBUTION VALUES FOR 
EACH VERTEX IN FIG.4. 

Node	
  	
   ASAP	
  	
   ALAP	
  	
   Time	
  Steps	
   Probability	
  

Input-­‐1	
  
Input-­‐2	
  
Input-­‐3	
  
Input-­‐4	
  
Input-­‐5	
  
Input-­‐6	
  
Mix-­‐1	
  
Mix-­‐2	
  
Mix-­‐3	
  
Mix-­‐4	
  
Mix-­‐5	
  
Output	
  	
  

0	
  
0	
  
0	
  
0	
  
0	
  
0	
  
2	
  
2	
  
2	
  
4	
  
6	
  
8	
  

0+2	
  
0+2	
  
0+2	
  
0+2	
  
2+2	
  
2+2	
  
2+2	
  
2+2	
  
4+2	
  
4+2	
  
6+2	
  
8+2	
  

0,1,2	
  
0,1,2	
  
0,1,2	
  
0,1,2	
  
0,1,2,3,4	
  
0,1,2,3,4	
  
2,3,4	
  
2,3,4	
  
2,3,4,5,6	
  
4,5,6	
  
6,7,8	
  
8,9,10	
  

1/(2+1)=0.333	
  
1/(2+1)=0.333	
  
1/(2+1)=0.333	
  
1/(2+1)=0.333	
  
1/(4+1)=0.2	
  	
  	
  
1/(4+1)=0.2	
  
1/(2+1)=0.333	
  
1/(2+1)=0.333	
  
1/(2+4)=0.2	
  
1/(2+1)=0.333	
  
1/(2+1)=0.333	
  
1/(2+1)=0.333	
  

 

 
Figure 5.  Distribution graph for each vertex in Fig. 4, derived from Table I. 

Paulin and Knight’s FDS implementation uses the distribution 
graph to compute probabilistic forces for each vertex, at each time 
step at which it can be legally scheduled [7]. The time complexity of 
computing all the forces for vertex v is cubic in Slack(v), which 
contributed significant overhead to the runtime of the algorithm. We 
also observed that the schedule quality produced using their cost 
function was inferior to list scheduling. We believe that their cost is 
more appropriate for dynamic implementations of list scheduling that 
update the costs of all available vertices each time that a vertex is 
scheduled; in contrast, our implementation assigns a static priority to 
all of the vertices, which never changes. 

We experimented with approximately 50 cost functions for 
assigning static priorities to vertices, and we found two that 
performed approximately well across all benchmarks. We refer to 
them as FauxForce1() and FauxForce2(), because they are reduced 
versions of Paulin and Knight’s force equation [7]: 

𝐹𝑎𝑢𝑥𝐹𝑜𝑟𝑐𝑒! 𝑣 =   
!

!"#!!!"!# !
!"!# ! ! !,! !(!)

 (12)  

𝐹𝑎𝑢𝑥𝐹𝑜𝑟𝑐𝑒! 𝑣 =   
!

!"#!!!"!# !
!"!# ! !!! !,! !(!)

 (13)  

The vertices are sorted in increasing order of FauxForce in order 
to prioritize them. Intuitively, FauxForce1() assigns the highest 
priority to vertices that have high slack values and at least one time 
step in a latency-constrained schedule with very little competition 
from other vertices. FDS would thus assign such a vertex to this time-
step. 

FauxForce2() is based on the observation that the list scheduling 
framework tends to assign vertices to earlier time steps within their 
slack window because of its greedy nature; consequently therefore, 
FauxForce1() could assign a high priority to a vertex whose most 
favorable time step in the latency-constrained context is fairly late in 
its slack window. To prevent this from occurring, FauxForce2() only 
considers the first two time-steps in the slack window of each vertex.  

IV. EXPERIMENTAL RESULTS 
We compare the runtime and solution quality of FDLS with three 

other DMFB scheduling algorithms: List Scheduling (LS), as 
described in Section III.C, Path Scheduling (PS) [3], and two genetic 
scheduling algorithms (GA-1 [11] and GA-2 [9]). FDLS1 and FDLS2 
respectively refer to FDLS using cost functions FauxForce1() and 
FauxForce2(), as shown in Eqs. (11) and (12).  

LS uses a priority function similar to modified list scheduling 
(MLS) [11]; however, it does not include MLS’ rescheduling step, as 
our goal is to compare the quality of cost functions within the 
standard LS framework. The PS implementation is identical to ref. 
[3]. As both LS and PS are polynomial-time heuristics, we are most 
interested to see whether FDLS can improve their results within a 
reasonable runtime overhead. 

GA-1 and 2 are iterative improvement algorithms that find locally 
optimal solutions, but have significantly longer runtimes than LS, PS, 
or FDLS. Both GA implementations start with an initial population 
size of 20 schedules, and run for 100 generations, evaluating 
approximately 2000 randomly generated schedules (some of which 
may be redundant with respect to one another).  

We considered three publicly available assays: PCR, In-vitro, and 
Protein [10]. PCR is very small and all algorithms easily scheduled it 
optimally; we omit PCR from our results. We targeted a DMFB with 
four work modules; all modules were specialized with appropriate 
detectors for the two assays [10]. Input generation and dispensing 
times were 2s for the In-vitro assays [11] and 7s for the Protein assay 
[10].  We ran two separate sets of experiments, where each chamber 
can store up to k = 2 and k = 4 droplets.  

Tables II and III report the schedule length (TS, 1s time-steps) 
and runtime (ms) of each scheduling algorithm on each benchmark. 
All computations were performed on an Intel Core2 Duo T5550 
machine running at 1.83GHz with 3GB of RAM.  

A. Schedule Length 
In-vitro: All scheduling algorithms achieved the same schedule 
lengths for k = 2 and k = 4. FDLS1 and FDLS2 produced schedules 
no longer than LS and PS for all In-vitro assays, and shorter than one 
or the other for the four largest. PS generated longer schedules than 
LS in two cases, a shorter schedule in one case, and equal-length 
schedules in two cases.  

TABLE II.  SCHEDULE LENGTHS (TS) OBTAINED BY DIFFERENT 
SCHEDULING ALGORITHMS FOR THE DMFB. 
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TABLE III.  RUNTIMES (MS) OF THE DMFB SCHEDULING ALGORITHMS 
FOR THE CASE WHERE EACH WORK MODULE CAN STORE UP TO K=4 DROPLETS. 
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In general, GA-1 and GA-2 produced the shortest schedules, with 
the exception of (2s_3r), where GA-2 produced schedule of length 19 
TS, while FDLS1, FDLS2, and GA-1 produced schedules of length 18 
TS. The difference in schedule length between GA-1, GA-2, FDLS1, 
and FDLS2 was at most 2 TS for all In-vitro assays. Given that GA-1 
and GA-2 are long-running iterative improvement algorithms, it is 
expected that they would produce the shortest schedules in this study. 

Protein: Varying the number of droplets, k, that each work chamber 
can store affected the length of the schedules significantly, except for 
PS which achieved schedules of 187 time-steps for k = 2 and k =4. 
LS, FDLS1 and FDLS2 produced shorter schedules than PS for k = 4,  
and longer schedules when k =2. These results echo ref. [3], which 
showed that PS is more robust to variations in storage availability 
than LS and FDLS.  

FDLS1 and FDLS2 produced significantly shorter schedules than LS 
for both k = 2 and k =4; taken in conjunction with the results for In-
vitro, FDLS appears to be an unequivocal improvement over LS.  

GA-1 produced the shortest overall schedule for the case k =4, while 
PS produced the shortest overall schedule for the case k =2; GA-2 
produced a notably poor quality schedule for k = 4. It is important to 
note that GA-1 and GA-2 repeatedly run LS, varying the vertex 
priorities randomly. Thus, for the resource-constrained case (k = 2), 
the results effectively show that one run of PS is more effective than 
multiple runs of LS (which generalizes to FDLS, GA-1, and GA-2). 
When more resources are available (k = 4), approaches based on LS 
can produce more effective schedules than PS.  

B. Schedule Length 
Table III reports the runtime of the heuristics for the case k = 4; 

similar results were obtained for k = 2, but are omitted to conserve 
space. Among the heuristics, PS had the fastest runtime, followed by 
LS, then FDLS2 and then FDLS1; the speed of PS aligns with the 
results reported in ref. [3]. The genetic algorithms ran considerably 
slower than the heuristics, which is to be expected. FDLS1 and 
FDLS2 run slower than LS, because they both involve a pre-
processing stage to compute the forces used for priority. FDLS2 runs 
faster than FDLS1 because its FauxForce2 calculation in Eq. (13) is a 
truncated version of FDLS1’s FauxForce1 calculation in Eq. (12). 

C. Summary 
FDLS1 and FDLS2 consistently produced schedules of better or 

comparable quality to LS and PS, while often approaching the quality 
of GA-1 and GA-2. Between FDLS1 and FDLS2, we consider FDLS2 
to be superior, since it produced equal-length schedules as FDLS1 in 
all cases, while running faster because it performs a truncated version 
of FDLS1’s faux-force calculation.  

V. CONCLUSION 
We have improved the quality of list scheduling for DMFBs by 

developing cost functions inspired by FDS in high-level synthesis of 
digital systems. The most effective cost function that we found 
performed quite well for the In-vitro assays that we considered, but 
left room for improvement with Protein, especially when storage 
space was restricted (i.e., the case k = 2 in Table III). We suspect that 
a dynamic scheduling approach that re-computes priorities after each 
operation is scheduled could potentially yield better results, albeit 
with a larger runtime overhead. Such an approach would be closer to 
the original FDLS algorithm proposed by Paulin and Knight [7]. 
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