A Field-Programmable Pin-Constrained
Digital Microfluidic Biochip

Daniel Grissom, Philip Brisk
Department of Computer Science and Engineering
University of California, Riverside
{grissomd, philip}@cs.ucr.edu

ABSTRACT

As digital microfluidic biochips (DM FBs) have matured over the
last decade, efforts have been made to 1.) reduce the cost, and 2.)
produce general-purpose chips. While work done to generalize
DMFBs typically depends on the flexibility of individually
controlled electrodes, such devices have high wiring complexity,
which requires costly multi-layer printed circuit boards (PCBs). In
contrast, pin-constrained DM FBs reduce the wiring complexity,
but reduce the flexibility of droplet coordination. We present a
field-programmable pin-constrained DMFB that leverages the
cost-savings of pin-constrained designs, but is general-purpose,
rather than assay-specific. We show that with just a few more pins
than the state-of-the-art pin-constrained designs, we can execute
arbitrary assays almost as fast as the most recent general-purpose
DMFB designs.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids; J.3 [Life and Medical
Scdences]: Biology and Genetics, Health

General Terms
Algorithms, Design, Performance.

Keywords
Digital Microfluidic Biochip (DMFB), Laboratory-on-Chip
(LoC), Pin-Constrained, Field-Pro grammable.

1. INTRODUCTION

This paper presents a design for a field-programmable, pin-
constrained digital microfluidic biochip (DMFB). Just as a field-
programmable gate array (FPGA) can be programmed by an end-
user in the “field,” a field programmable pin-constrained DM FB
can be programmed to execute any assay (biochemical protocol)
after it has been designed and manufactured. In contrast, prior pin-
constrained DMFBs have been assay -specific [9][17].

Direct-addressing DM FBs provide independent control over each
electrode; these devices are costly because the large number of
control inputs and high wiring complexity increases the number of
printed circuit board (PCB) layers. Pin-constrained DM FBs, in
contrast, have fewer control inputs and low wiring complexity,
but lack flexibility. This paper introduces #he first pin-constrained
DMFB with sufficient flexibility to enable field-programmability.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC ’13, May 29 — June 07 2013, Austin, T X, USA.

Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

Top
Plate >

Ground Electrode
Hydrophobic ”
e, Droplet

Bottom \ / |
|
Control Electrodes

(@ (b)

Figure 1. (a) Planar array of electrodes; (b) Cross-sectional view of

electrode array.
. HN

L1] |
el |

Storage

. Splitting
i

Transporting

Figure 2. Basic microfluidic operations form the building blocks for
assays to be executed on an array of electrodes.

1.1 DMPFB Technology Overview
1.1.1 Background: Physical Droplet Manipulation

DMFBs execute assays by manipulating nanoliter-sized droplets
of fluid. DMFBs are typically based on a phenomenon known as
electrowetting [11]. An electrowetting-based DMFB, as seen in
Figure 1, consists of a top and bottom plate coated with a
hydrophobic layer. The bottom plate has an array of droplet-sized
control electrodes, while the top plate has a single conducting
electrode that spans the entire array of control electrodes. Each
droplet is sandwiched between the bottom and top plates and will
hold its place if its underly ing electrode remains activated.

In Figure 1(b), a droplet overlaps neighboring electrodes; if a
neighboring electrode is activated, the droplet will begin to flow
toward the newly activated electrodes. Thus, if CE3 is activated
and CE2 is simultaneously deactivated, the entire droplet will
move to cover CE3. As seen in Figure 2, with the proper
sequence of electrode activations, several basic microfluidic
operations can be performed. Sensor-based detection operations
execute by moving a droplet to a detector (placed above an
electrode) and storing the droplet there. Dispense and output
operations are performed by 1/O reservoirs on the perimeter.

If a droplet is not centered over or adjacent to any activated
electrodes, it will drift across the DMFB in an undetermined and
unpredictable manner.

1.1.2 Background: High-level Assay Synthesis

Figure 3 illustrates the process of synthesizing an assay onto a
DMFB. A directed acyclic graph (DAG) represents the assay;
each node represents a microfluidic operation (i.e., dispense,
output, split, mix/merge, detect), while the edges represent
dependencies and order of operations (e.g, in Figure 3, M/
cannot be executed until /7 and /2 are complete).

Figure 3. A microfluidic assay is represented in the form of a DAG;
its operations are then scheduled and placed onto the DMFB array;

droplets are then routed be tween operation locations.

Controller Signals
C1: Activate Pins 1, 4

Cycle 1 5 Cycle 1.
Direct Addressing Pin-Constrained
(@) (b

Figure 4. Activating a pin on a (a) direct-addressing DMFB activates
(white) exactly 1 electrode per pin; (b) a pin on a pin-constrained
DMEFB activates 1+ electrodes per pin, depending on the pin layout.

The DAG is scheduled such that each operation has a specific
start and stop time-step; a time-step is the basic scheduling unit
for operations and usually lasts for 1s or 2s. Next, the placer
selects a specific I/O port or group of cells, called a module, to
perform each assay operation. Lastly, the router computes droplet
pathways between all operations at the start of each time-step.

1.1.3 Background: Low-Level Pin Mapping
The output of the compiler is a list of pins to active each cycle; a
cycle is the time it takes to move a droplet from one electrode to
the next. In Figure 4, a "dry" controller (e.g., a PC) sends signals
to activate pins during each cycle on the "wet" DMFB.

In a direct-addressing DMFB, each pin is electrically tied to a
single electrode such that an m X n array of electrodes has m X n
external pins driven by the dry controller. As each electrode is
individually controllable, direct addressing allows for maximal
flexibility in coordinating droplet-movement. Unfortunately, the
complexity of routing m X n pins underneath a m X n electrode
array is complicated and requires increasingly more PCB layers as
the array increases in size, leading to expensive products [17].

Pin-constrained DMFBs connect each control pin to multiple
electrodes (Figure 4(b)) to reduce the number of wires routed
underneath the electrode array; this reduces the number of PCB
layers, which, in turn, reduces cost. For a pin-constrained DMFB,
activating a control pin will active multiple electrodes, as shown
in Figure 4(b). This complicates assay compilation, as
independent control over individual electrodes no longer exists.
Thus far, pin-assignment has been proposed to reduce the cost of
assay-specific DMFBs [9][17], but generalized pin-constrained
DM FBs that execute arbitrary assays have not yet been realized.

1.2 Contribution

The contribution of this paper is a pin assignment scheme that
facilitates all basic microfluidic operations at pre-determined
locations in a pin-constrained DMFB; the resulting DMFB is
therefore field-programmable, rather than assay-specific. A high-
level synthesis flow targeting this device establishes automatic
compilation. Experiments demonstrate that field-programmability
is achieved with a handful of additional control pins compared to
state-of-the-art assay-specific pin-constrained DMFBs, and that
the performance overhead incurred at the cost of field-
programmability is marginal.

1]2]3]2]2]3[1]2]3]1]2]3

4 4 a

S — ELECTRODE LEGEND

5| [9]w]na]1a] [s][22[28] |5

6| |8|7|1a]1318]6) 6 | o

4 4 (23|29 |a

=1 — 7-13 | Mixing(s

5| [9[10f1a]12] [s 5 | 713 | wiing 5

16| |8|7[15/13[19]6 |24[30] 6| Mixer Hold (1

i 4 | i Mixer 1/O (1)

s| [9]w0faa12] [s[a2s[31] |5

e = [22:27] spiivstore-Det.(s50) 10 1
6 8|7|16/13|20| 6 5 plit-Store-Det. (SSD) 1/0 (1)
4 a2632] |4 Split-Store-Det. (SSD) Hold {1
's| [9]10[11]22 5 5 | Interference Region

=1 — (not actual electrode)

6| [8]|7|17]13[21]6 |27[33] |&

T 4 T *5 = Shared Pin, | = Independent Pin
1]2]3]1]2]3]1]2]3]1]2]3

Figure 5. Pin diagram for a 12x15 field-programmable, pin-
constrained DMFB which can accommodate 4 mix modules and 6
split/store/detect (SSD) modules. Routing and mixing pins are
shared; the interference region does not contain actual electrodes.
Holding and I/O electrodes are inde pendently wired to single control
pins for flexibility and programmabili ty.

2. RELATED WORK

Griffith and Akella [1] and Grissom and Brisk [2][3] impose
virtual topologies on top of direct-addressing DM FBs; a virtual
topology is a mesh-like network of streets and rotaries that
perform droplet transport, and dedicated reaction chambers that
perform all other assay operations. This limits flexibility, but
simplifies certain aspects of dynamic recompilation in response to
operation variability and errors. The field-programmable pin-
constrained DM FB employs a physical topology/architecture in
order to facilitate general-purpose assay execution.

Xu and Chakrabarty [17] introduced a multi-functional pin-
constrained DM FB that can execute a pre-defined set of assays;
however, it is not field-programmable. Luo and Chakrabarty [9]
introduced a pin-assignment algorithm that ensures that two
droplets can move independently on a pin-constrained DMFB
without conflicting; their algorithm reduced the number of pins
required to realize the multi-functional architecture. To the best of
our knowledge, their approach is not field-programmable when
more than two droplets move concurrently.

Other works have since come and optimized various aspects of the
pin-constrained problem. One such recent work is presented by
Huang and Ho and combines the droplet routing and pin-count
reduction problems together [6]. This is different from the typical
approach which starts with droplet routes that have been
computed on a direct-addressing array and then attempts to reduce
pins. Their solution uses sequential global routing and incremental
integer linear programming (ILP) stages to compute solutions.
Zhao and Chakrabarty also offer an ILP and heuristic solution to
the droplet routing and pin-count co-optimization problem [19].

Lin and Chang present work which focuses on the problem of
droplet cross-contamination on pin-constrained devices [8]; they
describe scalable algorithms which allow wash droplets to safely
clean up contaminated areas on pin-constrained devices. Finally,
S. Roy describes an orientation strategy to connect and wire
external pins to electrodes on multi-chip devices executing
identical assays in lockstep [12].

3. PIN-CONSTRAINED ASSIGNMENT

The field-programmable pin-constrained DMFB employs a pin
assignment scheme that enables all of the basic assay operations
(Figure 2) to execute in a conflict-free manner. Figure 5 shows a

[Desired Motion > [Desired Motion

Actual Motion (Split

Actual Motion

2-Phase Transport Bus 3-Phase Transport Bus

Figure 6. At least 3 repeatable pins are needed to move a droplet
along a straight path without causing the droplet to split. Electrodes
with bold borders indicate electrodes being activated next cycle.

3[1]2 I

1[2]3]1]2]3]a DMFB LEGEND

2 3

14 5 14

s| [9fwfuln] |shaf3] s I 1 [S5D1

[E] [=7[1)sls[E [£] I o 1

o gec RO e

5| [9fwfuf2] |s 5 7“'} |SSD3

] =l EsRlE [i i

4] |4 o I Un-activated Activated Droplet

1)2[3[1]z[s]2]z]s]1]z2]3 I Electrode __(D1) 1‘
© [1]2]a]1]2[3]1]2[3[1]2]3 @ I =JE! 2[3[1]2[3[1]2[3]1]2]3] &
_g 4| al A o 4 ! il 3
o] sm.u 513{5] s | .g T 5 9fwunz) s 1[3] s ©
~ |6 |8[7[1])16]6 s & I o E |8 | 7[1]s3]1s]6] [£] g
m |4l |afuf2] e b= [a 4 19f22] [4
2 |5 |(9jwnjl s 5 I m s 9 [10[11]1z| |[s 5] o
; |6, (8]7 isﬁﬁ‘s zﬁ@ 6] X E' E ﬂr 15]13 | 17| zlitil::l E g
= |4 4 i 2 E 4 4 4 &
= [1]2]3]1]2]3]a]2[3]1]2]3 I EgE 2[3[1]2]3]1 2 3[1]2[3] O
6 [1]2]3[1[2[s]a]z2]3]1]2]3 g o [2]2[3[1]2]s]1]2]3]1]2]s ‘é‘

[4] 5 =1 s -
s [s| [9]w[ufiz] [s[18[3] 5]] L[5 [9fwo]uliz] [s JBI:I s| &
X' [6] [8]71a[T]16[6 6| Wi = 6| [&[7[2]sslis 6] =

O i@ o 1 &5 sofE] [« F
= |5 [9fwun |s sl B @D [s| [ofo]ufzz] s BE7
S [6] [e[7[1[2)w/s [=[zE] [e To:. I % 6| [s[7[s]nl s [2]2s] |6 &
c |4l ~ A . ey d 4]
™ 123|1_‘z;§__1__23J1_13 [a] ‘a 11‘_3__1_2‘3|1‘1_3|1‘z_ 3 E

1]2[3]1]2]3]a]2]3]2]2]a I ® [[2]3]zl2]3]2]2(3]1]2]3 E

4] 4l 4 2 4 4] L

L sl || |7 e (sl e

|6 [8|7[1]13l166 6| gi 8 7[1]1316 6 s @

14 afusfe2] [4] o 4 asfg] [4] B

|s| [ofw]ulz2] [s 5| I 2 [s| [sfwofufn] [s s| 2

6 |8|7[2]ss]17]s |20[z5] 6 £ Ts| [a]7[E]s)7 s 20 s O

4 [a I ® 4 4

1]2]3[1]2[3]2]2[3]1]2]3 ¥ 1]2]3]2]2]3]1 2 3]2]2]3 |

Mixer Droplet /O Split/Store/Detect

Droplet IO

(a) (b)
Figure 7. Pin-activation sequence showing how a single droplet (D2)
can enter/exit (a) mix modules and (b) split/store/detect modules.

Sequences are designed to allow a droplet to enter/exit any module
without adversely affecting droplets (D1, D3)in other modules.

12x15 field-programmable, pin-constrained DMFB. The
topology/architecture reserves specific DMFB regions for assay
operations and others for routing. The topology contains a vertical
column of mixing modules on the left (blue/orange electrodes, 7-
17) and a vertical column of different modules on the right
(orange electrodes, 28-33) that perform splitting, storage, and
detection (which requires an external detector affixed above the
module); we call these modules SSD modules.

White electrodes labeled 1-6 surround the two columns of
modules and define the droplet routing regions. 1/O reservoirs can
be placed anywhere along the perimeter of the chip. The gray
electrodes labeled 18-27 indicate pins that allow droplets to enter
and exit each module. An interference region (pink) surrounds
each module to isolate droplets within the module from droplets in
the routing region or adjacent modules. These regions are not
functional, and do not contain electrodes.

The layout is designed for operation concurrency and scalability.
Since routing times are so much shorter than operation times [16],
we devote more pins to modules (as opposed to the routing
region) to allow more operations to be executed simultaneously at

any time-step. The architecture can also be lengthened or
shortened in the vertical dimension to produce a DMFB with any
desired number of modules.

3.1 DMPFB Operations and Synchronization
The following sub-sections briefly describe how the basic
microfluidic operations are performed on our field-programmable,
pin-constrained DM FB.

3.1.1 Droplet Transport

Figure 6 shows that at least 3 pins are required to successfully
transport a droplet along a straight path; this is called a 3-phase
transport bus [13]. In Figure 5, pins 1-3 control two horizontal
transport buses; pins 4-6 construct three vertical transport buses.
This pin-constrained virtual architecture facilitates droplet transfer
between horizontal and vertical transport busses, and routable
paths exist between all modules and I/O reservoirs on the chip’s
perimeter. Chips of arbitrary vertical height can be instantiated
without remapping the transport electrodes. The mix and SSD
module hold electrodes remain active during routing to ensure that
droplets within the modules do not drift.

Droplets are routed one at a time because the 3-phase transport
busses do not provide a sufficient number of unique pins to
sufficiently hold droplets in the routing area while another droplet
enters/exits a module. Additional cells could be added to the bus
to increase routing parallelism; however, given that routing times
(milliseconds) are much smaller than operations (seconds), they
are typically considered negligible and are often ignored [16]. See
supplemental Section S2 for more details on sequential routing.

3.1.2 Droplet Dispensing and Outputting

I/O reservoirs are placed on the DMFB perimeter. Each I/O
reservoir has an individually controlled electrode that leads a
droplet to the edge of the array; these are left off the diagram in
Figure 5 because they are common to all DM FB designs.

3.1.3 Merging/Mixing

Figure 7(a) illustrates a droplet (D2) entering and exiting a
mixing module (M2) without conflicting with droplets in other
modules (D1, D3). At the top, D2 has reached the routing
electrode adjacent to the mixing module (M2) it will enter; D1 is
stored in mixing module M7 and D3 is stored in SSD module
SSD1. All SSD module electrodes are activated (pins 21-23) to
hold all stored droplets in place during mixing module 1/O.
Activating pin 17 (M2’s 1/O cell) moves droplet D2 to a position
adjacent to M2. Activating pin 13 draws D2 into M2, while
transporting D/ to an adjacent cell within M/. Next, all droplet
hold cells (pins 14 and 15) move D/ and D2 to identical positions
within M1 and M2 respectively. Figure 7(a) also shows that the
electrode sequence is simply reversed to facilitate a droplet
leaving a mixing module.

Before mixing, two droplets must first merge (i.e., collide into
each other). A nearly-identical electrode sequence as the one seen
in Figure 7(a) handles this case. For the interested reader, we
demonstrate this in Figure S1 in the supplementary section. Once
M1 and M2 each contain a merged droplet, they can perform
mixing operations concurrently by activating cells 7-13 in
sequence, followed by 14 and 15 together. This permits both
droplets to complete one clockwise cycle in the mixing modules.
Mixing pauses by holding droplets on their hold cells whenever
another mixing module I/O operation occurs.

3.1.4 Storage, Detection, and Splitting
SSD modules perform storage and detection (if equipped with an
external detector). Both operations require a droplet to enter an

1f2]3]a]2]3]a]2]3]a]2]3][a]2]3]e]2]3]1]2]3]1]2]3
4 4 ala 4 4
(5| [ofmwfuf12| [s/18[3] [s)s| [of0fazf12] [s5]1sf3] [5]
E 8 |7[1]13]16] 6 sll6] [8]7[1)1316]6 E
4 4fifzz] [a]4 aj1f22] [a
Is| [e]wof1a]22] [s s|[s| [ow0]na]i2] |5 B
(6] [sl7[s]uv[2]eolzs] [Ee] = 7[s]slv2 s [F]
4 4 ala 4 4
1)2]3a]2]3]a]z2]3]1]2]3]1]2]3]1]2]3]1]2][3][1]2]3
(a) Cycle 1 (b) Cycle 2
[1]2]a]a[2]a]a]2]a]a]2]a][2]2]3]2]2]a[2]2]3]1]2]3
4 4 44 4 4
s [efwufi2| s18[3] [s[5] [slwuln [F]s[3] [G]
E 8 |7[1]13]16[6 66| |8][7[1]3l16]6 6
4 419@ 4l a aa 4
[5| [oafw]ua]iz] |5 s [s] [o]1w0]a]i2] [a E
E 8|7 [ss]ua[17[a]20[2] [6] 6| [7[ss]1a]a7]6 [20[2] [6
4 4 44 4 4
1)2]3f1]2]3]1]2|3]1]2|3]|[2]2]3]1]2]3]1]2]3]2]2]3

(c) Cycle 3 (d) Cycle4 -7
Figure 8. Pin-activation sequence for splitting a droplet (D2) and
storing in split/store/de tect (SSD) modules. Se quences are designed to

allow a droplet to split and store without adversely affecting droplets
(D1, D3)in other modules. NO TE: Legend same as Fgure 7.

SSD module and remain in place. Figure 7(b) illustrates the
process by which a droplet enters/exits an SSD module (SSD3)
without affecting other droplets in other modules. All SSD hold
electrodes are kept on, except for SSD3’s, which allows droplet
D2 to enter. SSD3's 1/O electrode is activated, followed by its hold
electrode, to complete the entrance. This sequence is reversed to
facilitate droplets exiting SSD modules.

Figure 8(a)-(c) illustrates droplet splitting. The initial position of
droplet D2, which will be split, is on a vertical transport bus next
to an SSD module’s I/O cell (a). The cell on the transport bus is
activated throughout the split. The I/O cell is then activated,
which stretches D2 to cover both cells (b). Next, the SSD
module’s hold cell is activated, and the 1/O cell is deactivated; this
splits D2 into two separate droplets: D2, on the hold cell, and D4,
in the transport bus. If storage is required for D4, then it must be
routed to an available SSD module, as shown in Figure 8(d).

4. FIELD-PROGRAMMABLE SYNTHESIS
This section describes the synthesis flow (Figure 3) that maps an
assay to the field-programmable pin-constrained DM FB.

4.1 Scheduling

List scheduling [3][16] is a fast, greedy, single-path scheduling
algorithm. List scheduling targeting the field-programmable, pin-
constrained DM FB differs from prior implementations in several
respects. The most important difference is that prior list
schedulers use one generic module type for all assay operations,
rather than distinguishing between mixing and SSD modules.

As shown in Figure 8(d), split modules may require two SSD
modules if both droplets that are produced must be stored. As
shown in Figure 9, the split node is converted into an
instantaneous split followed by two storage operations.

The scheduler reserves one SSD module to address routing
deadlocks, as explained later in Section 4.3. Thus, in Figure 5,
only 5 of the 6 SSD modules are available for storage and
detection. Prior list schedulers may transport droplets between
modules for storage for a variety of reasons [3][10]. Since only
SSD modules perform storage and each stores at most one droplet,
there is no motivation to transport droplets between SSD modules
during storage; thus, a stored droplet remains in a single SSD

Figure 9. Split operations are converted to a split and two stores for
synthesis.

1]2[3[1]2]3]1]2]3]a]2]3][1]2]3]2]z]3]1]2][3]2]z2]3
a 4] 4 a
5| [sfwufal ==l1] |s] B
| BhEEE==TT e (6]
4 4 |19]22] |4 a
aRDCECh 5]
6| |8|7]15]13[17|6 [20f2] |6 a
4 4 4 a4
1|2[3]1]2]3]1]|2]3]1]2]3 3
1-Cyclic Dependency Between 2-Dependency Broken by
D1and D3 Routing D3 to Routing Buffer

1]2][3]1]z[3]1]z[3]1]z]3

a a

5 5

6 6

a a

5| [9]10]12]12] 5

6| [8]7]15)13 2] |s

4 4| 4

1|2[a]1]2]z]1]2[3]a]2]3

3-Deadlock avoided by

routing D1 before D3
Figure 10. Cydic routing dependencies can be broken by first
routing a droplet in the cycle to the routing buffer module (one of the
SSD modules). Arrows indicate that the droplet at the tail end is
about to travel to the module at the head end. NO TE: Legend same
as Figure 7.

module for the entirety of its storage lifetime. This may reduce the
number of droplets that must be routed in certain cases.

4.2 Place ment/Binding

Similar to Grissom and Brisk [2][3], we reduce placement to a
binding problem, which is solved using the left-edge algorithm
[7]. One minor difference between our binder and others is that
we do not bind split operations since they yield two immediate
storage nodes (Figure 9). Instead, we simply bind the two storage
children directly. In the interest of space, we direct the reader to
other references for a more-complete description and psuedocode
of the left-edge binder [2][3].

4.3 Routing

4.3.1 Route Computation

A routing sub-problem refers to the set of droplets that must be
routed just before each time-step begins in the schedule. Before
each time-step (operation) begins, droplets are routed
sequentially, one at-a-time. Given the topology in Figure 5, three
different types of routes must be computed: input reservoir to
module, module to module, and module to output reservoir.

To route a droplet from an input reservoir to a module, it suffices
to compute the shortest distance from the input reservoir to the
electrode adjacent to the target module’s 1/O electrode. The main
question is to determine whether the clockwise or counter-
clockwise path is shorter. Once the droplet arrives, the appropriate
module input sequence is applied, as discussed in Section 3.1.

M odule-to-module routing uses the vertical column in the center
of the DMFB. The router applies the output sequence to extract
the droplet from the source module, routes the droplet north or
south as appropriate, and applies the input sequence to deliver the
droplet to its target module.

Table 1. Experimental results comparing the direct-addressing DMFB (DA) [3] with

our field-programmable, pin-constrained DMFB (FP).

Table 2. We present results from Xu's [17] and Luo's
[9] pin-constrained designs for chips which can run

Direct-Addressing DMFB (DA) vs. Field-Programmable Pin-Constrained DMFB (FP) PCR, In-Vitro 1, Protein Split 3 and a multi-functional
Electrodes Routin Operations Total ChiPWhiCh can run all three.
Array Dim. # Pins) g p. . — 5 -
Benchmarks Used Time (s) Time (s) Time (s) Xu's Pin-Constrained Results vs. Luo's Pin-Constrained Results
DA FP | DA | FP |DA| FP | DA FP DA FP DA FP . |#Electrodes| #Pins | Total Time (s)
Benchmark | Array Dim.
PCR 15x19 [12x21 | 285 | 153 [285| 43 | 0.7 | 21 | 11 11 | 117 | 131 Used Xu | Luo | Xu | Luo
In-Vitro 1 15x19 | 12x21| 285 | 153 |285| 43 | 0.7 | 2.6 | 14 | 14 | 147 | 166 PCR 15x15 62 1422 | 20 | 30
In-Vitro 2 15x19 | 12x21 | 285 | 153 [285| 43 | 1.2 | 3.8 | 18 | 18 | 19.2 | 21.8 nivicra i 15x15 . 25 el 73 (e
In-Vitro 3 15x19 | 12x21 | 285 | 153 |285| 43 | 1.9 | 6.2 | 22 | 18 | 23.9 | 242 Fiotelnspiiis: | doxls 4 26 [E08 150 diC
In-Vitro 4 15x19 | 12x21 | 285 | 153 285/ 43 | 1.8 | 88 | 24 | 19 | 25.8 | 27.8 olchbunction | S = 37 [RaR 150 B0
In-Vitro 5 15x19 | 12x21 | 285 | 153 |285| 43 | 2.9 | 11.6 | 32 | 25 | 349 | 3656 Table 3. We demonstrate the three benchmark assays
Protein Split1 | 15x19 |12x21| 285 | 153 [285| 43 | 1.8 | 2.9 | 71 | 71 | 72.8 | 73.9 from Xu [17] and Luo [9] on our field-programmable,
Protein Split2 | 15x19 | 12x21 | 285 | 153 |285| 43 | 6.2 | 6.1 | 106 | 106 |112.2 |112.1| Ppin-constrained DMFB design of various sizes.
Protein Split3 | 15x19 | 12x21 | 285 | 153 |285| 43 | 13.9 | 13.5 | 176 176 | 189.9 | 189.5 Total Assay Times for Increasing Field-Prog., Pin-Constrained Array Size
Protein Split4 | 15x19 | 12x21| 285 | 153 |285| 43 | 32.9 | 29.3 | 316 | 316 | 348.9 | 3453 Array Dim,| ¥Module [# Electrodes[T Total Time(s)
Protein Split5 | 15x19 | 12x25 | 285 | 177 |285| 49 | 63.6 | 61.4 | 670 | 596 | 733.6 | 657.4 (Mix/ssD) | Used PCR_|In-Vitro 1 Protein Split 3
Protein Split 6 | 15x25 | 12x29 | 375 | 203 |375| 55 | 161.2 | 127.4 | 1156 | 1156 |1317.2|1283.4 o 2/3 62 23 |1859| 19.00 -
Protein Split 7 | 15x25 | 12x31 | 375 | 239 |375| 63 | 200.3 | 260.6 | 2353 | 2276 |2643.3|2536.6 o o . il sl S
12x15 4/6 111 33 12.88| 16.56 -

by Wl e 6.53 0.68 1.07 0.98 12x18 5/7 133 39 13.00| 1660 189.65
(> 1isimprovement) 12x21 6/9 153 43 13.08| 16.60 189.53

To route a droplet from a module to an output reservoir, the
output sequence is applied to extract the droplet from the source
module; then the droplet is routed either clockwise or counter-
clockwise along the shortest path to the output reservoir.

4.3.2 Droplet Dependencies and Deadlock

Special care must be taken to prevent droplet dependencies from
turning into deadlock. Routing deadlock occurs when one or more
droplets are waiting for resources to become available that will
never become free. This can occur when a droplet dependency
cycle occurs, as seen in Figure 10. D/ is in SSD/ and waiting for
droplet D3 to leave M1, while droplet D3 is in M and waiting for
droplet D/ to leave SSD1. To break the cycle, we pick D3 to first
route itself to an empty SSD module (SSD2), as shown in step 2 of
Figure 10. The scheduler always keeps one SSD module
unallocated, as it cannot predict routing dependencies a-priori.

As seen in step 3 of Figure 10, although the cyclic dependency is
broken between droplets D/ and D3, deadlock can still occur if
the sequential droplet routing order is chosen poorly. Now,
droplet D3 travels to SSD1, while droplets D/ and D2 travel from
SSD1 and SSD3, respectively, to M. Droplet D2 can be routed at
any time, because no droplets will travel to SSD3 (its source) and
no droplets remain at M7 (its destination) that must first move. If
the router tries to route droplet D3 before routing DI, then
deadlock will occur because SSD1 is not yet free to receive new
droplets. If there is no such dependency check, droplet
contamination will occur. We describe a general algorithm to
eliminate droplet dependencies and provide the details and
pseudocode in supplemental Section S 3.

5. EXPERIMENTAL RESULTS

We implemented our field-programmable, pin-constrained DM FB
in C++; we compare with Grissom and Brisk’s fast online
synthesis framework [3], which is publicly available online [5].
All tests were run using a 2.8GHz Intel Core i7 CPU and 4GB
RAM on a 64-bit version of Windows 7.

5.1 Comparison to General DMFB

We first compare our implementation to the most recent generally
programmable direct-addressing DM FB design [3]. We run a set
of 13 assays based on the PCR [15], in-vitro diagnostics [14][15]

and protein-split benchmarks [4]. Table 1 shows the number of
seconds spent both routing and executing assay operations; the
total time is the sum of the two. Results are also given for the
number of usable electrodes (i.e., tied to a control pin) and
number of external control pins for the DMFB size used. For
Protein Split 5-7, the array dimensions had to be increased to
execute the assay for one or both ofthe DM FBs.

Our DMFB has longer routing times for the first 7 benchmarks
because of sequential routing;, however, it actually has shorter
routing times for Protein Split 2-7 because additional routes are
not generated between storage nodes, as described in Section 4.1.
Modules in the direct-addressing DMFB [3] can store up to two
droplets at any time. To utilize as many resources as possible,
droplets stored alone in separate modules will consolidate in order
to free up more modules to do useful work; routing these droplets
adds to the routing time, and therefore the total time as well.

The bottom row of Table 1 shows the average improvement of
our field-programmable DM FB compared to the direct-addressing
DMFB. We calculated this metric by computing the improvement
of FP over DA (baseline) for each benchmark and then averaging
these values over the entire set of benchmarks. Any value over 1
means FP is an improvement. Notice that, although FP’s average
routing time is 32% slower, its average operation time is 7%
faster. On average, the field-programmable pin-constrained
DMFB only suffers an average 2% slowdown in total execution
time, while reducing the pin count by 6-7x.

5.2 Comparison To Pin-Constrained DMFBs

Table 2 presents results for two prior pin-constrained assay-
specific and multi-functional DM FB architectures [9][17]; assay-
specific architectures were generated for PCR, In-vitro 1, and
Protein Split 3 assays, while the multi-functional chip can perform
all three assays. Many differences exist between these designs,
most notably that they are assay specific while ours is field-
programmable, and that they use linear array mixing modules,
which have longer latencies than the 4x2 mixers used here. Thus,
the schedules are different, and it is unclear if their reported
results include droplet routing times, as their primary objective
was to reduce the cost of their pin-constrained DMFBs by
reducing the pin-count. Table 2 is reproduced from Ref. [9].

Table 3 reports the performance and pin-count for PCR, In-Vitro
1, and Protein Split 3 for field programmable pin-constrained
DMFBs of varying sizes. For PCR and In-Vitro 1, execution times
decrease as the DMFB size (and thus the number of available
modules) increase, saturating at 12x15. For larger DMFBs,
performance degrades slightly due to longer routing times.

The Protein Split 3 assay requires 6 droplets to be stored at several
instances during the assay; thus, the 12x18 array with 7 SSD
modules (6 available to the scheduler) is the smallest compatible
device. The total execution time remains steady, regardless of
resources (we also tested on a 12x81 DMFB with abundant
resources) at 189s. In this case, the total execution time is not
limited by resource availability, but by the 7s droplet dispense
times [15]. It is unclear what droplet dispense times were assumed
in prior work [9][17]; reducing the dispense times to 2s instead of
7s reduces the assay execution time to approximately 100s.

In general, the field-programmable pin-constrained DMFBs
require more pins than the assay-specific or multi-functional pin-
constrained DMFBs reported in Table 2; this is to be expected
because our device is optimized for field-programmability, while
their devices are optimized for reduced pin-count.

Luo and Chakrabarty’s pin assignment scheme [9] theoretically
provides some flexibility, as two droplets are guaranteed to be
able to move without interfering with one another; however, they
did not provide details on how synthesis was performed, so it is
difficult to provide a direct comparison.

In contrast, the different versions of our field-programmable pin-
constrained DMFB reported in Table 3 are the same generic 2-
column architecture, but with a different number of resources. As
seen in Table 1, if we pick dimensions of reasonable size
(12x21), we can run all three assays in Table 2, as well as others,
due to the field-programmable nature of our design.

6. CONCLUSION

This paper has introduced the first field-programmable pin-
constrained DMFB that can execute arbitrary assays; prior pin-
constrained DMFBs have all been assay-specific or multi-
functional, but not field-programmable. To program the device,
we describe modifications to a synthesis flow for DMFBs, which
address architectural issues that are specific to our design.

Compared to field-programmable, direct-addressing DMFBs, the
field-programmable, pin-constrained DMFB offered comparable
or improved performance, while reducing the pin-count by 6-7x.
Compared to assay-specific, pin-constrained DMFBs, the field-
programmable device offered better performance and a
comparable pin-count for the PCR and In-vitro 1 benchmarks, but
degraded performance and a 2x higher pin-count for Protein Split
3. Compared to the multi-functional, pin-constrained DM FB, the
field-programmable pin-constrained DMFB required 1.44x more
pins for a comparably sized array (12x18 vs. 15x15). Thus, field-
programmable does come at a price in terms of pin-count and,
sometimes, assay execution time, compared to state-of-the-art
assay-specific and multi-functional pin-constrained DM FBs;
however, the flexibility provided is unmatched by prior DM FBs
and offers a significant advancement in terms of programmability.

7. ACKNOWLEDGEMENTS

This work was supported in part by NSF Grant CNS-1035603.
Daniel Grissom was supported by an NSF Graduate Research
Fellowship. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect those of the NSF.

8. REFERENCES
[1] E. Griffith and S. Akella. Performance characterization of a

reconfigurable planar-array digital microfluidic system. IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst, 25(2), Feb. 2006.

[2] D. Grissom and P. Brisk. A high-performance online assay
interpreter for digital microfluidic biochips. In Proc. of GLSVLSI,
pages 103-106, Salt Lake City, UT, USA, May 3-4, 2012.

[3] D. Grissom and P. Brisk. Fast online synthesis of generally
programmable digital microfluidic biochips. InProc. of
CODESHISSS, pages 413-422, Tampere, Finland, Oct. 7-12, 2012.

[4] D. Grissom and P. Brisk. Path scheduling on digital microfluidic
biochips. In Proc. of DAC, pages 26-35, San Francisco, CA, USA,
Jun. 3-7,2012.

[5] D. Grissom, et al. A digital microfluidic biochip synthesis
framework. In Proc. of VLSI-SoC, Santa Cruz, CA, Oct. 7-10,2012.

[6] T-W.HuangandT-Y.Ho. A two-stage integer linear programming-
based droplet rowting algorithm for pin-constrained digital
microfluidic biochips. IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst, 30(2), Feb. 2011.

[71 FE.J.Kurdahiand A. C. Parker, “REAL: a program for REgister
ALlocation. InProc. of DAC, pages210-215, Miami, FL, USA,
1987.

[8] C.C-Y.LinandY-W. Chang. Cross-contamination aware design
methodology for pin-constrained digital microfluidic biochips. IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst, 30(6), Jun. 2006.

[9] Y. Luwo and K. Chakrabarty. Design of pin-constrained general-
purpose digital microfluidic biochips. In Proc. of DAC, pages 18-25,
San Francisco, CA, USA, Jun. 3-7,2012.

[10] K. O'Neal, D. Grissom, and P. Brisk. Force-directed list scheduling
for digital microfluidic biochips. In Proc. of VLSI-SoC, Santa Cruz,
CA, USA, Oct. 7-10, 2012.

[11] M. G. Pollack, A.D. Shenderov, and R. B. Fair. Electrowetting-based
actuation of droplets for integrated microfluidics. Lab on a Chip,
2:96-101, 2002.

[12] S. Roy, D. Mitra, B. B. Bhattacharya, K. Chakrabarty. Congestion-
aware layout design for high-throughput digital microfluidic
biochips. ACM Joumal on Emerging Technologies in Computing
Systems, 8(3): article #17, Aug. 2012.

[13] V. Srinivasan, V. Pamula, and R. Fair. An integrated digital
microfluidic lab-on-a-chip for clinical diagnostics on human
physiological fluids. Labon a Chip, 4:310-315, 2004.

[14] F. Su and K. Chakrabarty. Architectural-level synthesis of digital
microfluidics-based biochips. InProc. of ICCAD, pages 223-228,
San Jose, CA, USA, Nov. 7-11,2004.

[15] F. Su and K. Chakrabarty.“Benchmarks” for digital microfluidic
biochip design and synthesis. Duke University, Department of
Electrical and Computer Engineering, 2006.
http:/www.ee.duke.edw/~fs/Benchmark pdf

[16] F. Su and K. Chakrabarty. High-level synthesis of digital
microfluidic biochips. ACM Journal on Emerging Technologies in
Computing Systems, 3(4): article #16, Jan., 2008.

[17] T. XuandK. Chakrabarty. Broadcast electrode-addressing for pin-
constrained multi-functional digital microfluidic biochips. InProc. of
DAG, pages 173-178, Anaheim, CA, USA, Jun. 8-13, 2008.

[18] P-H. Yuh, C-L. Yang, and Y-W. Chang. BioRoute: a network-flow-
based rowing algorithm for the synthesis of digital microfluidic
biochips. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
27(11):1928-1941, Nov. 2008.

[19] Y. Zhao and K. Chakrabarty. Simultaneous optimization of droplet
routing and control-pin mapping to electrodes in digital microfluidic
biochips. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst,
31(2), Feb. 2012.

| 1]2]3]1]2]3]1]2]3]1]2]3
4 4 4
9 5| [9]w0]11]12 51s|3| B
.g B '8 7[1])13]16[6 [c]
@ [[+ Jaofea] |4
~ |s| [9]wofna]2| [s 5
m [£] 27 Julv[a=lE] [
Z [a 4 4
: 1)z2[31]z2]3]1]z2]3]1]z2]3
B [1]2]3]1]2]z]1]2[3]1]2]3
Z [, 4 4
@ 5 lo[wulz| [s][3] [5]
2 [s] [sl7[1]nlss B
= |4 a|isfz2] [a
5| [9]10[1l12] |5 B
< |s ’TV‘TT 13[4) s [20[3] [
O |4 4 B0
E' [1]2]3[1]2[3|1]2[3]|1]2]3
™ [1]2]3]1]2]3]1]2]3]1]2]3
» 4 4 4
= [5] [efwmfn] [s[3] [5]
8 6| 187 14116 6 6]
g | 4 j1sfzz] e
< [5]| [s]ao]na]z2] [s5] 5
A (6] [8[7]5[5)17 6 20[5] [6]
o [4] 4 4]
2 [1]z[3]1]2]3]1]2]3]2]2]3
o = S DMFBLEGEND
S [1]2]3]1]2]3]1]2]3]1]2]3 TT11 ‘
5 4] 4 4 |]]
o 5] [9fwoul] |s 1s|3| 5] \:M_:q" 1SSD1 |
o & [8l7[1]1s]16]6 6| =0 S5D2
S [a 419 4 [l | B
S [5| [o[wlz] [s] iz B N Irh’#j SsD3 |
@ |6 |8 7[5]117 ¢ 20f23] |6 I +
4 4 4 Un-activated Activated Droplet
L 2R 31)23]1]2]3]1]z]3 Electrodes _Electrode _(D1)

Mixer Droplet I/O

Figure S1. Shows the electrode/pin activation sequence (from
top to bottom) that causes D4 to merge with D2 (in M2) to
become D5 (twice the volume) and re-sync with any other
droplets in mix modules (i.e., DI in M1).

S1. MERGING TWO DROPLETS

Figure S1 shows how a droplet (D4) merges with an existing
droplet (D2) in M2 to become D5. Once merged, the new droplet
(D5, with twice the volume) is synced with DI back to the
mixers’ hold locations (the bottom image in Figure S1). If D/ has
already been merged, then mixing can begin; if not, the general
process in Figure S1 must be repeated to merge a new droplet
with D1 before the merged droplets in M1 and M2 can be mixed.

S2. SEQUENTIAL ROUTING

In this section, we provide more details to explain why sequential
routing was chosen. As mentioned in Section 3, operation times
are on the order of seconds, while droplet transport times are on
the order of milliseconds. A typical time-step is 1 or 2 seconds
[16], while a typical droplet actuation is at most 10ms (100Hz)
[18]. With this in mind, we chose the 3-phase bus approach
because, although it restricts droplet routing parallelism, it
simplifies the general-purpose nature of the device.

Consider Figure S2 which shows our field-programmable, pin-
constrained design with two different numbers of modules and
module sizes. Notice that, despite the central vertical bus ending
with pin 4 or pin 5, a clean transition can be made between buses
because all of the pins adjacent to the intersection are guaranteed
to be unique [9]. Thus, the same algorithms can be used to map
assays to field-programmable, pin-constrained arrays of various

12)3]1]2]31T2]3]1[2T3

4 4 A

[5] [o9lw|uaf1z| [s[zzlzs] [5| [iTz2)3[2]2/3[xT2z]1[213
|6 | [8]7]14]1318]6 [s] [a 4 4
[4] 4l23[20] [a| |5| [7]s[10]9]1s]5 [20[25] |5
[s| [ofw]uaf1z] [s[— [s| [e 6 6
l6| [8]7]1s[13[10]6 [2a[30] [6| [a| [7]8]11]5]16]a[21]26] |4
|4] 4 14 5 5 5
[s| [9lw[aafsz| [sfes|as] [s| [e| [7]s]12]0]17]6[22]27] [6]
le| |8]7]16[13]206 || |a 4 4
|4 al26[32] |a| |s| [7]8[13]9]1s]s [23[28] |5
5| [9]w0n12] |s 5| |s] 6 6]
[6| [8[717)13]z2]627[z3] [6| [a| [7]s]1a]9]10]4]za]20] [4]
4 4 4 5 5 5
1l2]3]1]2]3[a]2[3]1][2]z3 12]3]1]2]3[1]2]3]1[2]3

Figure S2. Shows that the number or size of modules can be
changed and the 3-phase bus can be repeated, regardless of
array size, without causing pin-conflict at the vertical-
horizontal bus intersections (bold borders).

Dropletinterference

o:anlHon
4
Cycle 1: 5 Cycle 2: g
S an X 16|
Cycle &: ﬂll.:}l.- v B (5]

Multiple droplets cannot move
around corner from/to 3-phase buses

Multiple droplets move freely on 3-
phase bus horizontal bus

(@) (d)
Figure S3. Shows that moving two droplets concurrently is (a)
feasible when moving in a straight path, but (b) not always
possible when moving around a bend because droplet
interference can occur.

X Cycle 1: K Cycle 2:
1[2]3]2]2[3a]2]3]a]2]3] [2]2]3]1]2]3 2]2]a]1]2]3
a a a|[a 4 4
5| [ofw[uafz] [s|8lz1] [s] 5| [efwfaalsz] [5|18[a1] |5
[6] [al7[we]u3[1s [] s [8[7 a1 6 6 |
4 1) |3 [3] 12| []
5| [9fwlni2| [s 5 /5] [9]10f11]12 5
[6] [8l7lsslis] Jeolzs] [E]ls [s]7]ss 6 20[23] |5

a a|a 4 4
t]2]3]a]z]3a]2]3]a]2]3] [1]2]3]2]2]3 2[2]3]1]2]3

One droplet cannot enter a module while another is being routed or a split will occur

Figure S4. Shows that multiple droplets moving through the
vertical bus will result in an unintentional split when one tries
to enter a module.

sizes, given that they keep the same general form. This is
important because it would allow an end-user to design an assay
and then go purchase the cheapest compatible pin-constrained
DMFB; here, compatibility means that there are sufficient
resources available (meaning mixing and SSD modules) and that
the SSD modules have appropriate detectors.

As seen in Figure S3(a), it is always possible to move multiple
droplets along a straight path on the 3-phase bus because there is
sufficient space between repeating pin numbers. However, Figure
S3(b) shows that droplet interference can occur when moving
around a corner. In cycle two, if the next two pins are activated
(pin 3 and pin 5), the droplets will most likely merge. It would be
possible to hold pin 2 in cycle 3 such that the top droplet would
stall and avoid the droplet interference in cycle 3. However,
consider that droplets will only be making this transition when
traveling to or from an I/O reservoir.

Most of the opportunities to parallelize routing occur when
routing between modules. In light of this, consider Figure S4,
which shows multiple droplets in the central vertical routing bus.

1 Given sequence graph G = (V,E)

2 int timeStep = 0;

3 Repeat {

4 graph d = @; // Dependencies

5 for (Vv € V:v.startTime = timeStep)
6 for (Vp € v.parents)

7 d.add(p.location, v.location);

8 end for

10 list cc = @;// Connected Components

11 list scc = @; // Strongly Connected Components
12 cc = findAllConnectedComponents(d);

13 scc = findStronglyConnectedComponents(cc);
14 resolveDependencies(scc);

15 reverseTopologicalSort(cc); // scc € cc

16

17 for (Vc € cc)

18 for (Vo € c:o.startTime = timeStep)

19 for(Yop € o.parents)

20 routeSrcToDest(op.location, o. location);
21

22 timeStep++;
23 } until (time = max (v.startTime,Vv € V)

Figure S5. Psuedocode for route computation.

For the lower droplet to enter the lower mixing module (32), the
DMFB must activate pin 17, while simultaneously deactivating
pin 6. This is possible, but notice that the top droplet requires pin
4 to be activated to continue downward on its path. Activating this
pin will cause two adjacent electrodes to be activated near the
lower droplet, which will result in a split. Moving the top droplet
up, down or keeping it stationary will require pins 5, 4, or 6 to be
activated in cycle 2, respectively, which will each cause the
bottom droplet to split. If pins 4-6 are not activated, then the top
droplet will drift and the assay will not execute correctly.

Rather than deal with these complications, we chose to route
droplets one-at-a-time instead, as the impact on total assay
execution time is minimal.

S3. ROUTING ALGORITHM

This section elaborates on the routing process discussed in
Section 4.3; Figure S5 presents pseudocode. The router receives
a scheduled and placed DAG G = (V, E), where vertices represent
operations and edges represent droplets that must be transferred
between operations. Each vertex has a location, which indicates
the module or I/O reservoir where the corresponding operation
will take place.

Each vertex in V is scheduled to begin at a certain time-step, as
computed by the scheduler. A time-step typically lasts one or two
seconds and represents the time when operations are processed by
their respective modules or I/O reservoirs. When a new time-step
begins, then a new operation may start. This requires droplets to
be routed to the module that will execute the operation. Thus, we
start at time-step 0 (Line 2) and repeat the routing process for each
time-step until the last scheduled operation begins (Lines 3-23);
each iteration handles one routing sub-problem (time-step).

First, a graph of dependencies (d) is created based on the location
of each node that is relevant to the current time-step (Lines 4-8).
An edge (D,, D)) in the dependency graph means that droplet D,
will be routed to droplet D,’s current location, so D, must be
routed first. As seen in Line 7, dependencies are added to the
graph based on the location field because droplets are being

routed from the parents’ location to the newly-executing node’s
location.

The next step is to decompose d into its connected components
(Line 12), which can be computed using a simple recursive multi-
directional, depth-first search [S1]. Connected components are
processed on-by-one. To simplify further discussion, we will
assume that d is composed of a single connected component.

Routing is simple if d is acyclic. Since the algorithm routes
droplets one-at-a-time, edge (D,, D,) indicates that D, must be
routed before D,; otherwise, D, would merge inadvertently with
D, upon completing its route. A legal routing solution for the sub-
problem can be achieved by routing the droplets one-by-one in
reverse topological order [S2]. Lines 10-20 in Figure S5 solve the
more complicated cyclic case, which is described next; in the
simple acyclic case, Lines 11, 13, and 14 are unnecessary.

If d is cyclic, routing becomes more complicated, as a cycle
means that no droplet can complete its route without inadvertently
merging with a droplet waiting at its destination. This problem is
solved by temporarily allocating DMFB resources for storage.

The first step is to compute strongly comnected components
(SCCs) (Line 13) from the connected components using Gabow’s
path-based, depth-first search [S3]. One minor modification is that
we only need to identify the SCCs that contain more than one
node, as single-node SCCs do not have cyclic droplet
dependencies.

Once the SCCs that represent cycles are identified, the cycles
must be resolved (Line 14). As demonstrated in Figure 10, the
router randomly selects a droplet D, from the SCC and routes it to
an empty SSD module for temporary storage, which breaks the
dependency cycle. The dependency graph d is then modified to
account for the relocated droplet’s new location: each edge of the
form (D,, D,) is removed from d as D, is now free to move to its
destination, since D, has moved out of the way.

The scheduler always leaves at least one SSD module free so that
there is room to break one cycle in the SCC. If the SCC contains
multiple intersecting cycles, then any other free SSD or mixing
module could be used for temporary storage. This process repeats
until d becomes acyclic. Once d becomes acyclic, a legal routing
solution can be found, as previously discussed.

One optimization that can reduce the extra storage requirement
(not shown in Figure S5) is to break SCCs one-by-one. Droplets
corresponding to vertices with no predecessors in d are routed
immediately, and the corresponding vertex is removed from d.
Then, an SCC is chosen that satisfies the following property: for
every vertex D, belonging to the SCC and each outgoing edge
(D, D,), D, also belongs to the SCC. Breaking all of the cycles in
this particular SCC will ensure that at least one vertex in the
updated graph d will have no successors.

The advantage of the second approach is that it reduces the need
for temporary storage resources. As an example, suppose that d
has two SCCs, scc; and scc,, and that each requires one additional
storage resource to resolve. Under the first approach, two storage
resources must be allocated in order to convert d to an acyclic
graph before the droplets can be routed. Under the second scheme,
all of the droplets in scc; will be routed before all of the droplets
in scc,, or vice-versa. Therefore, both SCCs can use the same
storage resource, so just one available module suffices. In general,
if d contains k& SCCs, and scc; requires m; storage modules, then
the first scheme requires M; = m; + m, + ... m; modules for
storage, whereas, the second requires M, = max{m;, m,, ..., m}
modules.

That being said, we did not encounter a single droplet dependency
cycle in any of the 25 benchmarks seen in Table 1 and Table 3;
the largest assay, Protein Split 7, contains 2556 nodes. Although a
droplet dependency problem can still occur in theory, it seems
unnecessary, from a practical standpoint, to devote a large number
of resources to resolving droplet dependency cycles, even for
large assays.

S4. SUPPLEMENTAL REFERENCES

[S1] J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for
graph manipulation. Communications of the ACM, 16(6):372-378,
Jun 1973.

[S2] A. Kahn. Topological sorting of large networks. Communications of
the ACM, 5(11):558-562, Nov 1962.

[S3] H. Gabow. Path-based depth-first search for strong and biconnected
components. Information Processing Letters, 74(3-4):107-114, May
2000.

